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Abstract 

Association rule mining (ARM) is one of the most important tasks in data 

mining that has attracted a lot of attention in the research community. The Apriori 

algorithm provides a creative and an intelligent way to find association rule on large 

database scale. Apriori is one of the most important algorithms, which aims to explore 

association rules. The main problem associated with Apriori is the multi scan database 

requires to find the rules when data gets updated every time. This problem increases 

complexity when databases grow over time. The discovered results from the original 

data are needed when mining the modified data set verifying knowledge obtained 

earlier. 

Researchers have proposed many algorithms to deal with the incremental 

problem. Especially in applications were changing databases constantly like banking 

application. These algorithms created solution to the problem in an intelligent way, 

such as FUP, IMSC, MAAP algorithms. When the existing incremental learning 

approaches are reviewed, we found some defects such as:  

(1) They do not take all data manipulation operations, specifically the update 

operation.  

 (2) These algorithms rescan database many times. 

(3) Some of these algorithms discover knowledge without Frequency rate. 

The proposed algorithm in this thesis is called Incremental Apriori (INAP), and 

it deals with the problems described above. It is an incremental ARM that doesn’t 

need to rescan old database when gets update. The algorithm takes all data 

manipulation operation including the modifying, deleting and adding transactions into 

account when mine the data set and without going back to iterate over the original 

dataset. INAP algorithm allows us to extract knowledge with different thresholds (rule 

strength rate) every time without the needs to iterate over the original database 

meaning it solve the incremental problem in association rule.  
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Chapter 1 

 

Introduction 

 

 

2.5. Motivation 

Nowadays, data are collected in large quantities up to several megabytes or gigabytes, 

which made the task of generating useful knowledge complicated especially in the decision 

making related to business. This drew the attention of several researchers in the field of 

database on the production of knowledge extracted from there large dataset that could help 

decision makers. So they can make decision automatically (Bao H. T., 1998). 

The (Agrawal and Srikant, 1994) made the introduction of Association Rule Mining 

(ARM) in 1993, to generate knowledge from large transactional data in supermarkets. The 

proposed method by Agrawal (Apriori) had nontrivial serial iteration. Association rule 

mining is an important task in data mining that finds correlations between (Knowledge) 

items in a database, in the form “IF-THEN” rule. The classic application for association 

rule mining is market basket analysis (Han, et al., 2000; Rajak , and Gupta,2012) in which 

business experts aim to discover the shopping behavior of customers. Finding association 

rules help the decision maker to discover rules which work for shelving of products in 

supermarket, in order to increase sale and help customers locate them. For instance, in a 

supermarket, if a customer buys grapes, what is the probability that s/he buys a pack of 

juice as well? Using such Knowledge, marketing experts can develop strategic decisions 

concerning shelving, and planning. ARM has been widely used in various industries beside 

supermarkets such as mail order (Li, 2005), telemarketing (Xue, & Zhu, 2009), banking and 

visa card (Rajak , and Gupta,2012;Kobsa, et al., 2006), customer relationship management 
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(Rajak , and Gupta,2012), and e-commerce (Zhang, 2011), medical diagnosis, protein 

sequence (Rajak, and Gupta,2012). Extraction of knowledge is closely linked correlation with 

the presence of data, whenever data is found; extraction knowledge is also found (ARM). 

In association, many algorithms and techniques have appeared to extraction 

knowledge but mostly rely on three main things: Candidate set, support and confidence 

threshold. When any researcher to provide new improvements to the algorithms or to 

provide a new algorithm, we must put in the same matters of importance, including 

reducing the time required for the extraction of knowledge, as well as providing I/O time, 

also to be a high accuracy output. Reducing scanning time in incremental learning is the 

first motivation of this thesis. When a new transaction arrives and/or an old transaction 

leaves most classic approaches ignore the delete, and update operations. So, when 

knowledge is generated from the updated database (db+) it must rescan the input database 

to reflect the changes, unless the algorithm kept the old results obtained from the original 

DB. On the other hand, incremental learning associated with allowing the user to get the 

most recent updated frequent itemset, without rescanning the entire updated database (old, 

and new). This saves not only the computation time, but more importantly, the I/O time to 

load and write data from database to memory. In addition, this approach can handle the 

insertion, deletion and updateing operations independently. Furthermore, in my approach 

the user can generate different frequent itemset, with support for each one, without the need 

to rescan original database. 
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2.6. Knowledge Discovery in Databases (KDD) 

(Fayyad, et al, 1996) has defined knowledge discovery in database to be” the non 

trivial extraction of impact, previously unknown and potentially useful information in 

data”. Knowledge discovery as a process is depicted in Figure (Figure 1.1), and consists of 

an iterative sequence of the following steps (Han, and Kamber, 2000), where data mining is 

one of its primary phase. 

Hereunder is brief description of the KDD main processes:-  

Data cleaning: to remove noise or irrelevant data, incorrect or incomplete records like 

invalid values, or n null can be fixed by end users, or void those recode, during the data 

cleansing step. 

- Data integration: where multiple data from different sources may be combined. 

- Data selection: where data relevant to the analysis task are retrieved from the database. 

-  Data transformation: where data are transformed or consolidated into forms 

appropriate or mining by performing summary or aggregation operations, for instance.  

- Data mining: an essential process where intelligent methods are applied in order to 

extract data patterns. 

 

Figure 1.1: Data mining as a process of knowledge discovery (Han J. ,  Kamber M., 2000) 
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- Pattern evaluation: to identify the truly interesting patterns representing knowledge 

based on some interestingness measures.  

- Knowledge presentation: where visualization and knowledge representation techniques 

are used to present knowledge. 

 

2.6.1. Data Mining Main Concept 

Since 1980s, many organizations have generated a large amount of machine-readable 

data in the form of files and databases. To process this data, we have the database 

technology available to us that supports query languages like SQL. The problem with SQL 

is that it is a structured language that assumes the user is aware of the database schema 

(Bao H. T., 1998). SQL supports operations of relational algebra that allow a user to select 

from tables (rows and columns of data) or join related information from tables based on 

common fields.  

Thus, we need techniques, to simplify data, to become readable and understandable to                  

the user. Data mining refers to the discovery or extracting of new information (knowledge) 

in terms of frequent itemset from large amounts of data. Practically useful, data mining 

must be carried out efficiently on large files and databases. “To date, it is not well-

integrated with database management systems”. (Elmasri, and Navathe, 2001). 

 

Figure 1.2:  discovery Knowledge (Bao H. T., 1998). 

Many researchers treat data mining as one of the main phases in Knowledge 

Discovery in Databases (KDD) (Fayyad, et al., 1998). Alternatively, others view data mining 

as simply an essential step in the process of knowledge discovery in databases.  
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2.6.2. Types of Knowledge Discovered during Data Mining 

It is only after such preprocessing that data mining techniques are used to mine data 

to produce rules and patterns. For example, the results of the mining phase may be one of 

the following:  

• Association rules- What items customers are likely to buy together. e.g., whenever a 

customer buys video equipment, then he or she also buys another electronic gadget.  

• Sequential patterns- e.g., suppose a customer buys a camera, and within three 

months he or she buys photographic supplies, and within six months an accessory 

item. A customer who buys more than twice in the lean periods may be likely to buy 

at least once during feast day.  

• Classification (Labeled data)- e.g., customers may be classified by frequency of 

visits, by types of financing used, by amount of purchase, or by affinity for types of 

items, and some revealing statistics may be generated for such classes.  

• Clustering- When objects to be divided into groups, clustering applies. It is the 

process of grouping objects with certain similarities, where the similarities between 

the resulting clusters are minimized.  

 

2.7. Association Rule Mining (ARM) 

ARM is one of the most important and well researched techniques of data mining.  

ARM discovers interesting relationships among items in a given dataset, showing attribute-

value conditions that occur frequently together in a given set of data. The database is 

regarded as a collection of transactions, each involving a set of items. Association analysis 

is widely used for market basket or transaction data analysis. This process analyzes the 

market basket corresponds to what a consumer buys in a supermarket during one visit. 

Consider four transactions in below table (Table 1.1): 

 

 

 

Table 1.1 : Data sample in transactions database 
Id Items-Brought 
101 milk, bread, juice 
792 milk, juice 
1130 milk, eggs 
1735 bread, cookies, coffee 
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An association rule is of the form,  

X ðY ……………………………………..…………. (1.2) z ⊂ Ò  z ⊂ Ò Ò = ሼÒŖȖ̜Ϝሽ  
Where X, and Y, are sets of items. The intersection between X, Y must be empty  

(X ∩Y=ø). This association states that if a customer buys X, he is also likely to buy Y. In 

general, any association rule has the form LHS (left-hand side) named antecedent, RHS 

(right-hand side) named consequence, where LHS and RHS are sets of items (Agrawal and 

Srikant, 1994). Every itemset has support (frequency), where the rule has confidence 

(strength), and support. The support for the itemset is the percentage of transactions that 

hold all of the items. So that, if the support of itemset is low, it implies that there is no 

overwhelming evidence that items occurring together, because it only happens in a small 

fraction of transactions. 

For support and confidence there are two values, called minimum support, minimum 

confidence inputted by end user. If the itemset have support greater than Minimum support 

then the itemset called frequent itemset, otherwise, the itemset will be avoided. When 

generating the rule calculate the rule confidence is considered, if it is greater than minimum 

confidence then the rule called strong rule and will be derived. Otherwise it is deleted. The 

confidence measure means the strength of a rule and it corresponds to statistical 

significance (Agrawal and Srikant, 1994). 

Confidence value refer to ratio between the (X ÈY).support and A.support 

 

……. (1.3) 

conf(X ð Y) = supp(X È Y) 
 

supp (X) 
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…….. (1.4) 
 

For example if the rule X ð Y has confidence = 66.7% (meaning that, two from three 

transactions in which X occurs, contain Y item). According to (Agrawal and Srikant, 1994), 

the problem of discovering all association rules from a database can be decomposed into 

two sub-problems according to: 

§ Step 1. The generation of all itemsets with support greater than the minimum 

support threshold. These itemsets are called frequent itemsets. All other itemsets 

are called infrequent and are discarded. Many researchers unanimously, consider 

step (1) the main important problem, since the generations frequent itemset need 

to iterative steps such as creating candidate itemset and scan database for each 

itemset (multi scan) to ascertain the itemset is frequent or no.  

§ Step 2. For each frequent itemset generated in Step1, produce all rules that pass 

the minconf threshold. For example if item XYZ is frequent, then we might 

evaluate the confidence of rules ZXY ® , YXZ ® and XYZ ® . 

Frequent itemset mining (Step 1) is a crucial step of the process, and its 

computational efficiency strongly impacts the overall performance of mining association 

rules (Agrawal and Srikant, 1994). Generating rules by using all frequent itemsets and their 

supports is relatively straightforward. Discovering all frequent itemsets together with the 

value for their support is a crucial and a major problem (Elmasri, and Navathe, 2001). So in 

this study focuses on how to discover the large frequent itemset and generate the rules 

incrementally. 

 

2.8. Incremental Association Rule Mining problem 

Most algorithms for mining association rules run in the so called batch mode, i.e. they 

are intended to analyze the whole available transaction database. When new transactions 

are added to the database, the rule discovery process needs to be restarted from start point 

or scratch by applying any ARM algorithms such as Apriori algorithm, Eclat algorithm 

 Supp (X) = Number of transaction contain (X) item 
 

Total transactions numbers 
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(Zaki, and Gouda, 2003), and FP-Growth Pattern (Ha, et al, 2000). There are many 

incremental ARM methods such as: FUP (Cheung, and et at, 1996), NFUP (Chang, and et. 

At, 2005), IMSC (Bachtobji, & Gouider, 2006), MAAP (Zhou and Ezeife, 2001), aims to 

enable an incremental discovery process, which is composed of possibly many subsequent 

runs. In each run mining covers a portion of transactions, which have been accumulated so 

far or modified transactions. When association rules are found in the current data, they are 

added to the knowledge base, using an incremental algorithm, which ensures, that the 

resulting set of rules is highly similar to the one, which would be obtained if the whole 

transaction database was analyzed and extracted from scratch. These algorithms don’t go 

over (scan) the database again to update the rule when the original database is updated. 

The knowledge discovery process using incremental technique in three main steps 

(Dudek , Zgrzywa,2005): 

1. Generating all rules, for the existing portion of transactions which is updated by 

any ARM algorithm, without rescan the old data under any case. 

2. When new transactions are added, modified or deleted, new frequent itemsets or 

update existing set are needed to be generated or removed, from changes done 

over the source database incrementally. 

3. The analyzed facts are disposed. We assume that input data - transaction portions 

are in an acceptable format for a mining algorithm. The final step is to represent 

knowledge in rules form. 

The most complicated step in the previous three steps is step2. For that, our approach 

streamlines the extraction of the frequent itemset, incrementally and handles the different 

types of operations occur on the database (insert, delete, and update). 

Incremental association rule mining approach, which can keep the last results 

obtained after mining the source database and only consider data records that have been 

updated. A more efficient approach are can lead to a huge saving in computational time. 

To precisely explain the incremental problem in association rule, consider a database 

T, the following operations may occur on T:       

· The source database T can be incremented by T+ records (adding). 
· T- records can be removed from the source database T (deleting). 
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· T+ records can be added to T and T- records can be removed from T 
(updating). 

 

The result of any of the operations described above is an updated database T’.  It 

should be noted that the update operation is more difficult than insert/delete operations 

since it combines them both. The question is how the outcome (rule/knowledge) of the 

original database T can be updated to reflect the changes done on T without having to 

perform extensive computations. We suggest that this problem can be divided into sub-

problems according to the possible itemsets (attribute value) contained in T after 

performing data operations such as insert, update or edit. For example, itemsets in T can be 

divided into the following groups after inserting new records (T+): 

· itemsets that are frequent in T and T+ 
· itemsets that are frequent in T and not frequent in T+ 
· itemsets that are frequent in T+ and not frequent in T 
· itemsets that are neither frequent in T+ nor T 

 

The itemsets in groups 1 and 2 can be identified in a straightforward manner. For 

instance, if itemsets Y is frequent in T, then it’s support count in the updated training data 

(T’), Y’count = Ycount + Y+count, where Ycount is known and Y+count can be obtained 

after scanning T+. The challenging problem is to find frequent itemsets that are not 

frequent in T but frequent in T+ since these itemsets are not determined after scanning T or 

T+-. Once all above frequent itemsets are determined, the generation of the incremental 

rules is easy because no database scan is involved. 

2.9. Study Objectives 

Since the introduction of ARM (Agrawal and Srikant, 1994), it has continued to be an 

active research area in the data mining and machine learning communities. Association rule 

mining is an important task in data mining that finds correlations between items in a 

database. The classic application for association rule mining is market basket analysis 

(Agrawal and Srikant, 1994) (Han, et al., 2000), in which business experts aim to 

investigate the shopping behavior of customers in an attempt to discover regularities. In 

finding association rules, one tries to find groups of items that are frequently sold together 
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in order to infer certain items from the presence of other items in the customer’s shopping 

cart.  

Most of the existing ARM algorithms including FP-Growth (Han, et al., 2000), 

Apriori (Agrawal and Srikant, 1994), Horizontal Format Data Mining With Extended 

Bitmaps ( Alwis, el at,2012), Partitioning (Brin, et al., 1997) and others mine the input 

transactional database as whole in order to find frequent itemsets and produce the 

knowledge. When data manipulating operations (adding, deleting and editing) occur on the 

source database, current algorithms have to scan the complete transactional database one 

more time in order to reflect changes done. Further, since data are collected in most 

application domains such as retail supermarkets, banking, etc, on a daily, weekly or 

monthly basis, the source database can rapidly grow. As a result of that, the cost of the 

repetitive database scan each time the source database gets modified in order to update the 

set of knowledge is costly with regards to I/O and processing times.   

There has been some research works on incremental association rule mining 

algorithms, i.e. (Zhou and Ezeife, 2001; Cheung et al., 1996). The proposed algorithm in 

(Cheung et al., 1996) can be considered as a starting point for incremental association rule 

mining. For example, an incremental association rule mining algorithm called Maintenance 

Association Rule with Apriori Property (MAAP) (Zhou and Ezeife, 2001), has been 

presented in 2001. This algorithm efficiently generates incremental rules from an updated 

database. MAAP computes high level frequent n-itemsets and then starts producing all 

lower level n-1, n-2, …, 1 frequent itemsets. This approach decreases the processing 

overhead for generating some of the low-level frequent itemsets that have no chance of 

being frequent in the updated database.  Another incremental association rule mining 

algorithm, which extends the Fast-Update (FUP) algorithm to handle editing and deleting 

operations on transactional database, was proposed by (Tsai, et al., 1999). The FUP 

incremental algorithm deals only with dynamic insertion of records into the database and 

uses Apriori approach for discovering frequent itemsets. The proposed algorithm by (Tsai, 

et al., 1999) improves upon FUP with reference to processing time by storing not only 

frequent itemsets discovered from the original database but also itemsets that are not 

frequent, but may become frequent after updating the original database. These potential 
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frequent itemsets may reduce the search time for candidate itemsets in the updated 

database. 

The main challenges for most of the current incremental association rule mining 

algorithms can be summarized in the following folds: 

1) Most of them don’t deal with all data manipulation operations (insert, update, delete), 

like FUP and MAAP, and NFUP considers only either insert and delete. Therefore, there 

is a need for a generic incremental association rule for all data manipulation operations. 

2) Most of the existing incremental algorithms require scanning the source database 

multiple times in order to find frequent itemsets and produce the knowledge. We aim 

here to reduce the number of source database scan to just once. 

3) We believe that the incremental association rule mining is a challenging problem in data 

mining, which has not carefully studied. Further, the key to success in solving this 

problem is to determine the frequent rule items that overlap between the source database 

set and the records, which have been updated regardless whether the operation is insert, 

delete or edit.  Finally, hereunder are the main aims of this research project. 

4) Reducing the number of database scans for the source database to one, considering all 

data manipulating operations in the source database in the design and the 

implementation of our algorithm. Extending new existing traditional association rule 

mining to handle the incremental problem. 

 

2.10. Thesis Contributions 

There are several achievements in this thesis. The main contributions are shown and 

addressed below: 

2.10.1. Extending Apriori Algorithm to Handle Incremental 

Learning 

An Apriori algorithm is considered an important algorithm in association rule 

discovery. It has high efficiency for discovering strong rules. Apriori builds rules, by full 

scanning the database multi times. The proposed algorithm Incremental Apriori (INAP) 
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extended Apriori to discover rules incrementally with high efficiency without going to 

rescan the database.  

 

 

2.10.2. Reducing Database Scans 

The main problem of ARM after generating candidate set items, is the need to scan 

the database to calculate the actual support generated itemset many time. This consumes a 

great time. For instance, this time will increase largely in many cases. The most important 

case is when the database is distributed or large. However, in INAP the data will be 

represent in vertical format (Transactions Identifier List, TID List). INAP needs to scan 

(db+) new database with the modified old database and transfers it to TID list. After this 

step the calculation of support for itemset is performed by intersection there lists, without 

the necessity to rescan database.    

2.10.3. Handling All Data Manipulating Operations 

INAP algorithm is different from most incremental association rule mining 

algorithms. Since it takes into consideration all data manipulation operations (add, update, 

and delete). Most incremental algorithms deals with only the add operations. 

2.10.4.  Extraction of Knowledge  

Naturally, each algorithm of ARM algorithms (algorithms generally) have specific 

inputs and outputs. Inputs such as: thresholds (Minsupp, Minconf), database. Outputs as: 

frequent itemset and rules. The output of the ARM algorithms is knowledge based on the 

inputs thresholds. When we need to extract new knowledge based on the different 

thresholds, algorithm may need full scan database, and build knowledge from scratch. In 

INAP the user can extract much knowledge with different threshold without need to rescan 

original database. The algorithms separate frequent itemset from intermediate complete list 

based on minimum support that entered each times.  
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The rest of this thesis is arranged as follows. Chapter 2 reviews the related work. This 

chapter is divided into two major sections that correspond to the background materials. 

Chapter 3 presents our approach proposed to discovering association rules incrementally. 

Chapter 4 concludes and future works the thesis.   
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Chapter Two  
 

Overview Association rule Mining (Related Work) 

3.1. Introduction 

Since Agrawal has discussed the problem of association rule mining, it has received a 

lot of attention from researchers. This attention is motivated by several application domain 

such as market basket analysis, www analysis, telecommunications analysis, mail order (Li, 

2005), telemarketing (Xue, & Zhu, 2009), banking (Kobsa, et al., 2006), and e-commerce 

(Zhang, 2011).  Several association rule mining algorithms have been constructed to solve 

this problem (Agrawal and Srikant, 1994; Han et al, 2000). They compute association rules 

that describe a data set. Nevertheless, the sources database is continuously updated. It 

follows that discovered knowledge describe a data set at the mining moment. Changes of 

data imply invalidation of knowledge and necessity to update it. 

Wherefore, many researchers try to solve the problem, and several algorithms of 

incremental maintenance have been proposed (Cheung et al, 1996), (Tsai et al, 1999), 

(Zhang et al, 1997), (Bachtobji, & Gouider, 2006). Most of these algorithms are based on 

Apriori (Agrawal and Srikant, 1994) that is oriented sparse databases such as transactional 

databases. These approaches have been developed and are mostly focused on minimizing 

the number of database rescanning.  

However, in this chapter, we will review some of related work, it was done or 

presented by many of researchers and we will make comparison in the last chapter. After 

presenting proposed approach in this thesis, I hope that present enhancements in 

incremental association rule discovery make proceeding in the line of discovery knowledge 

incrementally. This chapter provides the relevant background for the discussions in next 

Chapters (chapter 3). 
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3.2.   Common Association Rules Approach 

In this section, we will review a common association rule approaches. There are a lot of 

approaches proposed, but we will focus in most common algorithm Apriori, because we 

would to extend Apriori to deal with incremental problem.  

3.2.1.  Apriori Algorithm 

Apriori is an influential and classic algorithm for mining frequent itemsets for Boolean 

association rule learning. The algorithm uses a breath-first search strategy. The algorithm is 

developed to work on static data, where database is transactional. It finds the frequent 

itemsets, iteratively by repeating the following steps through multiple scans of the database. 

At iteration k (step k), it finds frequent itemsets with cardinality from 1 to k. The set of all 

frequent k-itemsets is denoted by Lk. Then the candidate k+1 frequent itemsets, denoted by 

Ck+1, are generated by combining all combinations of itemsets in Lk. Finally, in the prune 

phase, any k-itemset that is not frequent and cannot be included in Lk+1 is removed from 

Ck+1. 

 First, the set of frequent 1-itemsets is found. This set is denoted L1. L1 is used to find 

L2, the frequent 2-itemsets, which is used to find L3, etc., until no more frequent k-itemsets 

can be found. The finding of each item in Lk requires one full scan of the database. By 

definition, if an itemset (I) does not satisfy the minimum support threshold, s, then (I) is not 

frequent, i.e., I.support < s. The Algorithm Pseudocode for Apriori can you see in 

Figure.2.4. 

Itemset property. All non-empty subsets of a frequent itemset must also be frequent. 

 By definition, if an item A is added to the itemset I, then the resulting itemset (i.e., 

IÈA) cannot occur more frequently than I. Therefore, I È A is not frequent either, i.e., 

(IÈA).support < s. what meaning? All supersets that contain non frequent subset item, the 

supersets also non frequent itemset. 

How to generate candidate set, taking above property?  To generate the Lk from Lk-1, 

there are a two step process is followed, consisting of join and prune actions. 
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1. The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk-1 

with itself L୏ି ଵ⋈ L୏ି ଵ. This set of candidates is denoted Ck.  

2. The prune step: Ck is a superset of Lk, that is, its members may or may not be 

frequent, but all of the frequent k-itemsets are included in Ck. A scan of the database 

to determine the support of each candidate in Ck would result in the determination of 

Lk (i.e., all candidates having a count no less than the minimum support count are 

frequent by definition, and therefore belong to Lk). Ck, however, can be huge, and so 

this could involve heavy computation. To reduce the size of Ck, the Apriori property is 

used as follows. Any (k-1)-itemset that is not frequent cannot be a subset of a frequent 

k-itemset. Hence, if any (k-1)-subset of a candidate k-itemset is not in Lk-1, then the 

candidate cannot be frequent either and so can be removed from Ck. This subset 

testing can be done quickly by maintaining a hash tree of all frequent itemsets. 

Whenever, discovery of large frequent itemset is finished, go to generate rule. As we 

define the association rule previously A ⊆ ⊆→B, also A  I, B  I, and A∩B= Ø, and this 

association rule A→ B is strong rule, if have confidence more than minimum confidence 

(cheung et. at. , 1996; Agrawal and Srikant, 1994).  

Where Apriori is one of best algorithms to discovery knowledge from large databases, 

there are many algorithms was proposed based on Apriori, for handle it to solved specifics 

problem such as incremental problem. FUP (Cheung, and et at, 1996), NFUP (Chang, and 

et. At, 2005), IMSC (Bachtobji, & Gouider, 2006), MAAP (Zhou and Ezeife, 2001), 

Horizontal Format Data Mining With Extend Bitmaps (Alwis, et al, 2012).  

 

· Example 

Consider the transaction databaseDB presented in 

(Table2.1) with a minimum support requirement is s=50%. As 

we see in (Table 2.1), the first column “TranID” represents a 

unique identifier of each transaction, and the“Items” column 

lists the set of items of each transaction. The original database 

includes 12 transactions. Accordingly, the supports of the 

frequent itemsets are at least 6. 

Table 2.1: a transaction 
database 

 

TranID Items 
001 ABC 
002 ABD 
003 ABCD 
004 ACDE 
005 ABCD 
006 BCD 
007 CDE 
008 ACDE 
009 ABDE 
010 BCD 
011 BCD 
012 ACDF 
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According to the learning philosophy of Apriori algorithm, and before starting the 

first pass to find frequent items, we prepare candidate set (C1) size of 1 items, that contain 

all items in the DB. The first step is to make a pass over DB, to find first frequent itemset 

(1-itemset), that contain one items and his actual support. If an item support is greater than 

Min_Support, as we show in Figure2.1. The item E, F it will be discarded. 

 

When we reach to frequent 1-itemset ( F1) , we start the second iteration by passing 

F1 over DB to generate candidate 2- itemset (C2), and there actual supports and as show in 

Figure2.2, And discard AB because it had 5 as actual support, and this less than Min 

Support. 

 

  Moreover, now we have the 2F item set ,we can go to next iteration to get C3, but in 

this step we will go deeply into instruction to show important point may by don’t take it 

right previously. However, I well write all possible item set may be exist into output in this 

iteration from generate candidate item set (C3):{{ ABC},{ABD},{ACD},{BCD}},  but if 

you take sight to output candidate set  C3, we don’t see ABC, ABD, in this function 

generate candidate, the item set is put in output list, if and only if all sub set of item set is 

 

 
 
 
 
 
 
 
 
 

Figure 2.2: Apriori - Second Iteration 
 

C2 
itemsets Sup 

AB  
AC  
AD  
BC  
BD  
CD  
 

2F 
itemsets Sup 

AC 6 
AD 7 
BC 6 
BD 7 
CD 9 

 

C2 
itemsets Sup 

AB 5 
AC 6 
AD 7 
BC 6 
BD 7 
CD 10 

Second Pass 

 

 
 
 
 
 
 
 
 
 

 
Figure 2.1: Apriori - Fist Iteration 

 

First Pass 

C1 
itemsets Sup 

A 8 
B 8 
C 10 
D 11 
E 4 
F 1 

1F 
itemsets Sup 

A 8 
B 8 
C 10 
D 11 

 

C1 
itemsets Sup 

A  
B  
C  
D  
E  
F  
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frequent item in input frequent item set, from previous sake the two item set ABC,ABD, 

discard from output candidate set.  

However, now we have C3 candidate set, and can pass to DB, to find actual represent 

item set in C3 as we show after scan DB, {ACD}.support = 5, {BCD}.support= 5, and both 

is less than Min support, yonder this, two item list can’t pass to frequent item set, after 

complete the frequent item set is empty, for this should be stop. 

 

Finally we get large frequent item set, and it’s contain equal to 2F, if there are item 

set in 3F, will be add to large frequent item set. And when stop generate function you can 

go to generate strong rule. 

Assume, the Minimum confidence c= 80%, find possible association rules? 

Since large frequent item set = {(AC,6),(AD,7),(BC,6),(BD,7),(CD,9)}, from this list we 

can go to generate possible rule as confidence formula we will now Calculate the foreseeable rule: 

A→ C =sup(A→ C)/ sup(A) = 6 / 8 = 75% , un exceeds the min confidence . 

C→ A =sup(C→ A)/ sup(C) = 6 / 10 = 60% , un exceeds the min confidence.  

A→ D =sup(A→ D)/ sup(A) = 7 / 8 = 88% , exceeds the min confidence . 

D→ A =sup(D→ A)/ sup(D) = 7 / 11 = 64% , un exceeds the min confidence.  

B→ C =sup(B→ C)/ sup(B) = 6 / 8 = 75% , un exceeds the min confidence.  

C→ B =sup(C→ B)/ sup(C) = 6 / 10 = 60% , un exceeds the min confidence.  

B→ D =sup(B→ D)/ sup(B) = 7 / 8= 88% , exceeds the min confidence.  

D→ B =sup(D→ B)/ sup(D) = 7 / 11 = 64% , un exceeds the min confidence.  

C→ D =sup(C→ D)/ sup(C) = 9/ 10 = 90% , exceeds the min confidence.  

D→ C =sup(D→ C)/ sup(D) = 9 / 11 = 82% , exceeds the min confidence.  

From previous calculation, there are four association rule, (Rule, confidence ) = {( 

A→ D, 88%),( B→ D, 88%),(C→ D, 90%),(D→ C, 82%)}. 

  

 

 
 
 
 
 

Figure.2.3: Apriori - Third Iteration 
 

C3 
itemsets Sup 

ACD  
BCD  
 

3F 
itemsets Sup 

  
  

 

C3 
itemsets Sup 

ACD 5 
BCD 5 

 

Third Pass 
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Input: Database, D, of transactions; minimum support threshold, min sup. 
Output: L, frequent itemsets in D. 
Method: 
1) L1 = find frequent 1-itemsets(D); 
2) for (k = 2;Lk-1 = ∅;k++) { 
3)    Ck = apriori_gen(Lk-1, min_sup); 
4)    for each transaction t Î  D { // scan D for counts 
5)      Ct = subset(Ck , t); // get the subsets of t that are candidates 
6)     for each candidate cÎCt 
7)        c.count++; 
8)                         } 
9) Lk = {c Î  Ck│ c:count ≥ min sup} 
10) } 
11) return L = ∪kLk; 
 

Procedure apriori gen(Lk-1:frequent (k-1)-itemsets; min_sup: minimum support) 
1) for each itemset l1 Î  Lk-1 
2)   for each itemset l2 Î  Lk-1 
3)      if (l1[1] = l2[1]) ^ (l1[2] = l2[2]) ^ ::: ^ (l1[k-2] = l2[k-2]) ^ (l1[k-1] < l2[k-1]) then { 
4)          c = l1⋈ l2; // join step: generate candidates 
5)         if has_infrequent_subset(c,Lk-1) then 
6)  delete c; // prune step: remove unfruitful candidate 
7)         else add c to Ck; 
8) } 
9) return Ck; 
 

procedure has_infrequent_subset(c: candidate k-itemset; Lk-1: frequent (k-1)-itemsets); // use prior 
knowledge 

1) for each (k-1)-subset s of c 
2)      if s ∉ Lk-1 then 
3)          return TRUE; 
4) return FALSE; 

Figure.2.4: Pseudocode for Apriori Algorithm (Agrawal and Srikant, 1994) 

 

 

3.2.2. Eclat (Tid-list Intersection) 

The Eclat algorithm has been presented in (Zaki, et al., 1997), to reduce the number 

of passes over the database. Addressing the question of whether all frequent itemsets can be 

derived in a single pass for each item in 1-itemset. Eclat uses a vertical database transaction 

layout, where frequent itemsets are obtained by applying simple tid-lists intersections, 

without the need for complex data structures.  

From Figure.2.6 in next page, shows how a typical vertical mining process would 

proceed from one k-itemset to k+1-itemset using intersections of tidsets of frequent items, 

without need to rescan database. For example, assume minimum support =33% , the tidsets 

of T (t(T) = 1356) and of W (t(W) = 12345) can be intersected to get the tidset for TW 

(t(TW) = 135) which is frequent.  
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Figure.2.5: Horizontal and Vertical Database Layout 

A recent variation of the Eclat algorithm, called dEclat, has been proposed in (Zaki 

and Gouda, 2003). The dEclat algorithm uses a new vertical layout representation approach 

called a diffset, which only 

stores the differences in the 

transactions identifiers (tids) of a 

candidate itemset from its 

generating frequent itemsets. 

Author claimed diffset                                                                         

is better than tidlist. Yes, it’s 

good while the item set is small 

and the transaction it contains 

almost item, but if the set of item 

is large it’s become same. 

 
 

 
Figure.2.6: Tidsets for Pattern Counting (Zaki Moh., and Gouda K., 2003) 
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3.2.3. FP-Growth Pattern 

FP-growth algorithm (Han, et al., 2000), generates a highly condensed frequent 

pattern tree (FP-tree) representation of the transactional database. The algorithm does not 

subscribe to generate and test paradigm of Apriori. Instead, it represents the data set using a 

compact data structure called an FP-tree, and extract frequent itemsets directly from this 

structure. Each path in FP-tree is a frequent item. This approach, shrink the scanning source 

database, where the algorithm read transaction by transaction and represent it in tree, and 

after reading all transaction, there is no need to rescan database. 

 

Figure.2.7: FP-tree Pattern to discover frequent itemset 
 

Performance comparison between FP-growth and Apriori on two 10000 record data 

sets (Han, et al., 2000) indicates that FP-growth is at least an order of magnitude faster than 
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Apriori since the candidate sets that Apriori must maintain become extremely large. Also 

the searching process through the database transactions to update candidate itemsets 

support counts at any level becomes very expensive for Apriori, especially when the 

support threshold is set to a small value. As the number of transactions grows, the 

processing time difference between the two techniques becomes still larger.  

 

3.3.  Common Incremental Association Rule Approaches 

In this section, we will review a common incremental association rule approaches. As 

we show the most proposed algorithms was extend for Apriori: 

3.3.1. Fast Update Algorithm (FUP)       

This algorithm deeming the first attempt, to deal with the main problem in this theses 

incremental association rule discovery, this algorithm was presented by Cheung, et at, and 

the algorithm was published in paper badge (Cheung, and et at, 1996), the authors have 

proposed an algorithm called Fast Update algorithm (FUP) to efficiently generate 

associations in the updated database, the efficiency of this algorithm comes from its first 

attempt to deal with incremental association mining. 

Authors in The FUP algorithm relies on Apriori and reused it after presented on 

(Agrawal and Srikant, 1994), and considers only these newly added transactions. And the 

FUP it’s a good attempt to deal with increment Database, Let DB is original Database, and 

the Transaction added on called db, an X item set from k-itemset, is either frequent or 

infrequent in DB or db.  

Let db be a set of new transactions and DB be the updated database (including all 

transactions of DB and db). An itemset x is either frequent or infrequent in DB or db.  

Therefore, x may has one case from four possibilities, as shown below in Figure2.8. 

Case1: x is frequent in DB& in frequent in db. 
Case2: x is frequent in DB& infrequent in db. 
Case3: x is infrequent in DB& frequent in db. 
Case4: x is infrequent in DB& infrequent in db.  

 

Figure 2.8: Four Scenarios Associated with an Itemset in DB 
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As we the FUP in an enhancement over Apriori algorithm, and as apriori in the first 

pass, FUP scans db to obtain the occurrence count of each 1-itemset. Since the occurrence 

counts of Fk  in DB are known in advance. 

As it’s shown in Figure 2.8, if x is frequent in db, there are two possible cases the 

first one Case1, in this state no problem and this is the best chance, but the other one 

Case3, in this case unfortunately we need to scan the original DB to find support for this 

itemset.  Similarly, the next pass scans db to count the candidate 2-itemsets of db. If 

necessary, DB is rescanned. The process is reiterated until all frequent itemsets have been 

found. In the worst case, FUP does not reduce the number of the original database must be 

scanned. 

 

3.3.2. New Fast Update Algorithm (NFUP)        

After the FUP, Many of researchers (Chang, and et. At, 2005) proposed the 

algorithm. This algorithm proposed to deal with the main problem in this thesis incremental 

association rule discovery.  The algorithm was published in paper named New Fast Update 

Algorithm NFUP. This algorithm forced in generate itemset from database incrementally 

with period time, as most of algorithms that work in itemset mining stand on apriori 

algorithm, and its threshold. The same function is used to generate candidate set. This 

attempt, as we say to deal with increment association rule from growth Database. However, 

this approach needs to keep all data with frequent item set in last update of database 

periodically for each increment in database, and there are final item set. 

To picture this approach assume there Transaction Database called DB, and generate 

knowledge for this DB, and after a period of time, the decision maker new to last version of 

knowledge, the algorithm is generating knowledge for the new database, the transaction 

inserted to database after generate last knowledge from original database, and packet the 

new database in db1, and the next period put database into: db2,db3,db4,db5,……… 

 This algorithm new in some cases rescan database but there is a difference between 

this algorithm and previous algorithm. In the FUP in Case three the algorithm needs to 
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make complete scan for database to find support to some of frequent item set, but NFUP 

may need to rescan some of packet of database. 

In this algorithm the author suggest three categories for item set in frequent item set: 

1) α set : frequent itemset in DB+. 

2) β set : frequent itemset in dbm,n(m≤ n), but infrequent in dbm-1,n. 

3) γ set: frequent itemset in dbm,m, but infrequent in dbm+1,n. 

This imply that α needs less rescan the original database, because any item set labeled 

as α is frequent over all database. Also, the problem still exists, that needs to rescan the 

original, or some parts in database, and needs to check the  β set and γ set, to determining 

itemset labeled β, or γ is frequent or not. 

 

3.3.3. IMSC Algorithm 

While Association rule Mining is hot search field, and increment association is 

important problem, many researcher go on to solve this problem, (Bachtobji, & Gouider, 

2006), propose a new approach called IMSC (Incremental Maintenance of association rules 

under Support threshold Change) that is based on FUP (Fast UPdate) algorithm (Cheung et 

al, 1996). FUP maintains a rule base incrementally under the same support threshold. When 

s=s’(where S: original support, and S’: new support ), IMSC and FUP are practically 

identical. 

In IMSC modify the FUP algorithm to solve practically problem that change the 

Support in next time to generate knowledge, when S<>S’. In this approach, there is a good 

trial to solve important part of incremental association mining that change of support, but 

there are many parts of problem that searchers a ovoid them. The manipulation operation 

not solved the researchers solved only insert operation but delete and update not take it and 

its effect in original data, and in some cases we need to rescan original database.   
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3.3.4. Maintenance Association Rule with Apriori Property (MAAP) 

An incremental association rule mining algorithm called Maintenance Association 

Rule with Apriori Property (MAAP) (Zhou and Ezeife, 2001). This algorithm efficiently 

generates incremental rules from an updated database. MAAP computes high level frequent 

n-itemsets and then starts producing all lower level n-1, n-2,…, 1 frequent itemsets. This 

approach decreases the processing overhead for generating some of the low-level frequent 

itemsets that have no chance of being frequent in the updated database.   

In the real world where large amounts of data grow steadily, some old association 

rules can become stale, and new databases may give rise to some implicitly valid patterns 

or rules.  

Hence, updating rules or patterns is also important. A simple method for solving the 

updating problem is to reapply the mining algorithm to the entire database, but this 

approach is time-consuming. The algorithm in this paper reuses information from old 

frequent itemsets to improve its performance. Several other approaches to incremental 

mining have been proposed.  

Although many mining techniques for discovering frequent itemsets and associations 

have been presented, the process of updating frequent itemsets remains trouble for 

incremental databases. The mining of incremental databases is more complicated than the 

mining of static transaction databases, and may lead to some severe problems, such as the 

combination of frequent itemsets occurrence counts in the original database with the new 

transaction database, or the rescanning of the original database to check whether the 

itemsets remain frequent while new transactions are added. 

This work proposes an algorithm for incremental mining, which can discover the 

latest rules and doesn't need to rescan the original database.  
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3.4. Chapter Summary 

This chapter is split into three main sections. First section, we present small overview 

for normal or traditional approach association rule mining, since the core of this approach 

association rule mining. Second section, will review some of related work which was done 

or presented by many of researchers also a comparison will made in the last chapter, after 

presenting my approach. The two previous sections show the main on challenges in 

association rule mining. I hope that the enhancements that are made in incremental 

association rule discovery make proceeding in the line of discovery knowledge 

incrementally. This chapter also provides the relevant background for the discussions in 

next Chapters. 
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Chapter Three 
 

The Proposed Incremental Algorithm  
 

3.1. Introduction  

In the previous chapters, we surveyed existing approaches that deal with mining 

frequent itemset incrementally and statically and their defect. We showed that most of 

incremental algorithms, have been ignoring some manipulation operations especially data 

update. It has been argued that it is important to take all manipulating operations by the 

algorithm into account, especially for real time application such as banking.  

In this chapter, we aim to provide an algorithm that improves the efficiency of the 

incremental learning of ARM techniques by dealing directly with insert, update and delete 

data operations. There are many problems that will be solved in this chapter, not limited to 

the reduction of time, and database scans to complete the calculation supports itemsets. One 

of these problems, to be considered in developing ARM by changing the thresholds values 

of (Minsupp, Minconf) on the fly. These results, in a new ARM algorithm, called 

Incremental Apriori Algorithm (INAP). 

 To speed up the process of finding frequent itemset, the proposed algorithm uses a 

vertical data format from association rule discovery ( Margahny, and hosam, 2010), where 

each item is followed by a TID-list that represents its occurrences in data. In addition, 

INAP employs an efficient intersection method that reduces source database rescan, instead 

of using the Apriori multi scan approach.  

This chapter deals with the following: 

a) Incremental learning in ARM. 

b) Efficiency of rule learning. 

c)  Using multi input thresholds.  
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INAP is presented in Section 3.2 where details about itemset discovery are discussed. 

An overview of the proposed algorithm and abstract methodology were given.  

 

3.2. Solution Scheme for Proposed Algorithm   

The process of Association rule mining can be divided into two sub-tasks (Agrawal 

and Srikant, 1994): 

 (1) The discovery of all frequent itemsets (The itemset have support is equal or 

greater than the minimum support threshold). This task is the basic foundation in the 

process. 

(2) Generate rule: 

XðY ------------------------ Rule Confidence (RConf) 

Where X, Y, XÈY are frequent itemsets, where has Rconf above the minimum 

confidence threshold. The support of an itemset in association rule mining is defined as the 

proportion of transactions in the database that contain that itemset and the confidence of a 

rule XðY, is defined as support(XÈY)/support(Y). 

 Despite the simplicity and style of the solution strategy used in association rule 

mining, the first sub-task of discovering frequent itemsets is a computationally expensive 

problem and has been studied extensively in the literature, e.g. (Li , et al., 2005;Han, et al., 

2000; Zaki, et al., 1997).  

However, there are many attempts to discover the Knowledge and frequent itemset 

incrementally to reduce of expensive of process (Anour, et al., 2010;  Xu, and Wang, 2006; 

Chin-Chen, et al.,2005).  This research presented good approaches and solutions, as shown in 

next sections of this chapter. As we know there are manipulate data base periodically, and 

there are three operations any user in data base application system can manipulate data by 

using those operations. Add, Update, Delete, and there are two operations, almost all of 

approaches where disregarded, it Update, Delete, and we mustn’t forget the importance of 

these operations, may be deuce importantly or greater than Insert operation. 
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The research, take incremental discovery knowledge, as incremental in database, that 

it’s good thing, but the original database as we know it periodically manipulate, whether by 

insertion, or editing, and may be deletion from Data. 

Assume, the database refer to marketing center: 

· Insertion: sell new billing, contain many of items. 

· Editing or update: may by the customer need to add new items to last buy bills, or 

backing some of item, and in real world, it’s done or need to modification of existing 

bills more that insertion. e.g. in bank system, the updated database greater than more 

new account inserted.  

· Deletion: may be customer discard or undo buying some of bills.    

To picture the previous, and become clearly if there quantum of transaction assume 

1x106 transaction in data base named Distributor_DB, that refers to a large company that 

distributes dietary items. The manager of the company had been generate model of 

knowledge (association rule), as we show in Figure 3.1. 

After amount of time or months, the manager would to generate knowledge model for 

current state of database, as we show in the Figure 3.2. The current state of database 

contain four part of data: the first one the new transaction was inserted to database named 

New_Distributor_DB that contains new data added to original data, on the other side there 

are too many changes happened in original, it is right that nearly 60% of data there are no 

changes effect thereon, as we can see in Figure 3.2. A bout 25% there are changes and 

modification in transaction, may be new items added to transaction in this part of data. 15% 

from original data was removed from database for a reason or another. 

 

Distributor_DB 
 

Size = 1X106 Transaction
 

Generate Rule 
Knowledge  
Association Rule  
Knowledge1 

Figure 3.1: Knowledge Discovered from Databases 
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   Most of approaches assume that the old database always keeps the same status, and 

there are no changes will occur in data that stored in database. Really, the original data may 

change periodically, either editing some of transaction or deleting amount of data. Thus, 

any approach allegation that the original data will always stay on the same status, this is far 

from truth. 

 

We build present approach, on this step:  

1. From log database file to classify the Transactions in New_Distributor_DB in three 

groups, Added Transactions, updated transactions, deleted transactions.  

2. Using tid-list structure, generate intermediate List (L): the item set define as 

Where L= {i1, i2, i3, …, in}, 

in have three attribute in= {i, S, List<TID>}. i meaning itemset, and S: Actual 

support for itemset (i), and List<TID>, contain the transactions id that the itemset (i) 

exist in it record transaction.    

3. When we need to update Knowledge, from step one start from Delete, update, Classes 

and for all itemset in L, which contain transaction ID, remove the transactions ID from 

List<TID>, and discount the S. For add, update, classes applied search method for 

itemset and update the intermediate list L. 

4. After complete search for itemset support for added and modify transactions, we 

separate the itemsets, which have support greater than minimum support.  

  

Figure 3.2: Knowledge Discovered from New Manipulate Databases 

Distributor_DB 
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Knowledge 
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Knowledge2 
????? 

Unfading from original 
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Deleted 

 

New_Distributor_DB 
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3.3. Incremental Apriori Algorithm (INAP) 

 

3.3.1.   Related Definitions to INAP 

In this section we write many definitions that need in this chapter: 

· Original database (DB): or source database is scanned first time to generate the 

knowledge, in the form of If-Then rules. 

· Modified database (db+): after insertion, deletion or updating. 

· Log file (LogF): controlled by the DBMS, log file saves all changes it is formed that 

occured on the database. We need to handle all events that occur in (transactions), so the 

db can be emended all time. A log file has been used to keep track of these database 

changes. The log file contains three columns which are the transactionID, ActionID and 

finally ActionDate. Whenever, a transaction is performed by the user, a new record is 

added to the log file. This helps identifying the newly changes or updates in the 

incremental databases by avoiding repeatedly scanning database to locate newly updates.  

· Knowledge Date (KD). It is xml file to store the date of the last time the algorithm has 

executed and generated the knowledge, to ensure that on the next time the algorithm 

should be executed from the last time it has been found. 

· Add transactions list (LTA): the list of transactions ID. That has been added to the 

database after the KD date. 

· Update transactions list (LTU):   the list of transactions ID. That got modified in the 

database after the KD date. 

· Delete transactions list (LTD):   the list of transactions ID. That has been deleted from 

database after the KD date. 

· First list (L1), in this list we save the itemset (that length =1) and its support, and the 

data structure of this list and the most of the list, Where:  L1= {i1, i2, i3, …, in}, 

The three attributes {i, S, List<TID>}, where i corresponded to an itemset, and S: Actual 

support for itemset (i), and List<TID>: contain the transactions iD that the itemset (i) exists 

in. 
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· List of all itemset (Ln), in this list we keep the complete itemsets. 

· Candidate set (CL):  intermediate list between Ln and Ln+1. 

· Frequent itemset (Lf): the subset of (Ln) with survived support. Meaning all frequent 

itemsets above MinSupp threshold after iteration. 

· Rule: the association rule generated. 

· MinSupp:  The user minimum support threshold, to derive frequent itemsets. As show in 

Figure 3.3 below. 

· MinConf: the minimum confidence threshold the user can define this threshold value, to 

create strong rule (rule). With different threshold values different strong rule list as show 

in Figure 3.3.  

 

 

Figure 3.3: The flowchart of the proposed Algorithm  
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3.3.2. The Algorithm  

The learning algorithm proposed in this chapter consists of two main functions to 

generate association rules. The first one aims to generate complete itemset list with the 

support for each item (Ln). The second one is used to separate the frequent itemset (Lf) 

from large itemset (Ln), according to minimum support entered by user (see Figure.3.3), 

after separation go to generate strong rule, with confidence greater than minimum 

confidence entered by user. There are many of secondary operation such as: extracting of 

frequent itemset, generating strong rules, saving output, reading old output.  

When execute INAP algorithm need some of inputs to get out knowledge 

incrementally: the modified database (db+) (Where DB not needed, because we don’t need 

rescan data scanned previously), the last output itemsets, the date, when last output 

generated. If there is no last output exists in input stream, then the algorithm builds new 

knowledge from zero. 

1. Ln ← read(Ln); 
2. KD ← read(KD); 
3. PreperTransactionList(out LTA, out LTU, out LTD, in LogF, in KD); 
4. DiscardTransaction(in LTU, in LTD); 
5. L1 ← GetL1Items(); 
6. do { 
7.       CL ← GenerateCandidates(Ln); 
8.       Ln ← GetItemset(CL) 
9.    } while (CL!Empty) 
10. Lf ← GetFrequentItemset(MinSupp,Ln); 
11. rule ← GetStrongRules(MinConf); 

 
Figure3.4: INAP learning algorithm Pseudocode  – Main body 

 
 
 

3.3.3. Preparing the Data 

 

3.3.3.1. Data Format 

Many presented works in ARM have used the horizontal format presented in the 

Apriori approach (Agrawal, and Srikant, 1994; Han, et al., 2000)( Alwis, el at,2012). We can 

see the horizontal format in (Table 2.1, Figure2.5, and Figure2.7). There are many 

researchers (Zaki and Gouda, 2003; Zhou and Ezeife, 2001; Zaki, et al., 1997) stated thout 
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approaches for ARM discovery, in vertical format is faster than horizontal format. A 

database in horizontal format consists many columns (attribute), and there are rows each 

row name transaction has values for database attribute (for example in supermarket contain 

purchases items), where each one has a unique identifier. A major drawback resulting from 

using horizontal data representation is the multiple data scans when searching for itemsets 

at each level leading to high computation cost.  

A database in vertical format comprises a collection of items, where each item is 

followed by a list of Transaction identifier (tids), which contain that item, this list is called 

a tid-list (Zaki and Gouda, 2003) show that the vertical layout is a more efficient way of 

representing the data because candidate generation and support counting are facilitated, 

since an items support is calculated by fast intersections between tid-lists. The vertical 

format reduces the number of I/O operations. In spite of the advantage of vertical data 

representation, when the cardinality of the tid-list becomes very large, intersection time gets 

larger as well. This happens particularly for large and correlated transactional databases ( 

Zaki and Gouda, 2003). 

We have Combining between two ways, because of the prevalence of horizontal 

format (transactional database), and the desired efficiency from vertical format. Through 

the adoption of horizontal format in database, and when scan database (only one) to find 

support for (L1), represent the data into vertical format. When go to find (L2) don’t return 

to rescan database in order to calculate support for 2-itemset. We can see the horizontal 

format and how convert to vertical in Figure2.5.  

According to the sequence of the steps in Section1.2, for the extraction of knowledge, 

before applying data mining algorithms, we need to prepare the data. In this section, we 

will discuss preparing Data issue. This process needs to execute sub tasks such as, 

preparing the data to a mining form, to update the existing knowledge. Surely, we get the 

initially in horizontal format in the database similar for the data that appear in (Table 3.1). 

In order, to take advantage of the characteristics of the vertical format (Table 3.2 – Table 

3.4), we transfer the data into vertical format to perform mining later such as (Table 3.4). 
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Table 3.1: Horizontal database format 
TID Items 
1 a,b,d,e 
2 b,c,e 
3 a,b,d 
4 c,d,e 
5 a,b,c 
6 b,c,d,e 
7 a,c,e 
8 b,c,d 
9 a,b,c 
10 a,b,c,d 

 

Table 3.2: Vertical  Binary database format , for data (Table 3.1)

TID 
Items 

a b c d e 
1 1 1 0 1 1 
2 0 1 1 0 1 
3 1 1 0 1 0 
4 0 0 1 1 1 
5 1 1 1 0 0 
6 0 1 1 1 1 
7 1 0 1 0 1 
8 0 1 1 1 0 
9 1 1 1 0 0 

10 1 1 1 1 0 
 

Table 3.3: Vertical format for database, data 
show in Table 3.1 

 
Items 

a b c d e 

T
ID

 

1 1 2 1 1 
3 2 4 3 2 
5 3 5 4 4 
7 5 6 6 6 
9 6 7 8 7 
10 8 8 10  

 
9 9 

  
10 10 
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Table 3.4: Vertical format (TID List): the data representation 

need in INAP to allow intersection between lists 
Item TID 

a 1,3,5,7,9,10 
b 1,2,3,5,6,8,9,10 
c 2,4,5,6,7,8,9,10 
d 1,3,4,6,8,10 
e 1,2,4,6,7 

 
A database in vertical format comprises a collection of items, where each item is 

followed by a list of row identifiers (tids), which contain that item, this list is called a TID-

list (Zaki, et al., 1997). The study (Zaki and Gouda, 2003) show that the vertical layout is a 

more efficient way of representing the data because candidate generation and support 

counting are facilitated, since an items support is calculated by fast intersections between 

TID-lists. 

GetL1Items () 
1. {        
2.   Itemlist ← Database.Read(“select ID from Item”); 
3.   Foreach(item in ItemList) 
4.    { 
5.      Item.Transaction ← Database.Read(“select TID from Transaction 

where item_ID= item.ID”); 
6.      Item.support ← item.transaction.count; 
7.      L1.merge(item); 
8.    } 
9. } 

 

Figure3.5: INAP learning algorithm – GetL1Items Function 
 

Preparing the data we use the GetL1Items() function (Figure3.5), this function collects 

the first itemset from database. For example in supermarket the first-itemset (1-itemset) 

{bread, milk, yogurt, chocolate, biscuits, sugar, salt, etc….}, the data structure of this list 

can be shown in the end of Section 3.3.1 (Definition Section), it contains three parts 

(itemset name, actual support for this item, list of transactions contain this itemset). For 

each item_ID we find set of transaction id for each item, and get actual support for first 

itemset. In short, the function GetL1Items represents the data from the horizontal format 

(Table 3.1) to the vertical format TID-List (Table 3.4).    
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3.3.4. Incremental Frequent Itemset Discovery 

The pseudocode of the INAP algorithm for frequent itemsets discovery is shown in 

Figures (Figure3.6-3.9). This includes three functions, the first one is candidate set 

generation. That finds the complete itemset, and frequent itemset. This is accomplished by 

applying the GenerateCandidates function, by passing Ln and making intersection to 

discover Ln+1, show Figure3.6.  

There is a high similarity between generate candidate set in proposed algorithm 

INAP, and normal Apriori for generate Candidate set. The deferent between them pruning 

itemset that have actual support = 0, but in normal Apriori pruning done by cutting the 

itemset have actual support less than MinSupp.  

When generating new itemsets, and calculating its support, the GenerateCandidates 

function is used by utilizing intersection among TID List, and by this way we save 

resources and more importantly one rescan database is used. The way the normal Apriori 

generates frequent itemset, that needs to satisfy the support by scan database many time for 

each itemset level. 

GenerateCandidates (Ln) 
1. { 
2.   for( all item in Ln) 
3.    { 
4.     Candidateitem.itemset = Ln[Location].itemset ⋃ 

Ln[Location+1].itemset; 
5.     Candidateitem.TList = Ln[Location].TList ∩ Ln[Location+1].TList; 
6.     Candidateitem.support = Candidateitem.TList.count; 
7.     CL.add(Candidateitem); 
8.    } 
9. } 

 

Figure3.6: INAP learning algorithm – GenerateCandidates Method 
 

In Apriori there are pruning itemset have actual support less than MinSupp, this best 

step as attempt to reducing rescanning database, but in another way the discovered frequent 

itemset (knowledge generally), that have support greater than MinSupp. The users can’t 

filter or generate other frequent itemset with different MinSup threshold, but in our 

approach users can generate much knowledge with different threshold without need to 

rescan original database.  
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      GetItemset(CL)  
1.   {     
2.      Foreach(item in CL) 
3.       If(Candidateitem.support>0) 
4.        Ln+1.merge(Candidateitem); 
5. } 
      

Figure3.7: INAP learning algorithm – GetItemset Method 
 

Function GetItemset Figure3.8 has small process, which gets itemset from candidate 

set (CL), and put the itemsets we have support greater than zero in the complete itemset Ln 

. 

GetItemset(CL) method will be called in line 8, consider this method functionality 

which is very easy, but in the same time it is very important. Also, it is articulated point that 

promotes the proposed algorithm. Which are summarized function as searching for generate 

itemset that generate with previous method, in large itemset (Ln)  and if there exists will be 

merge two transaction list, and addition two support together. Otherwise add generated new 

item to (Ln). 

Finally we make intersections, and we get the complete itemset (Ln), and (CL) 

become empty set. It is possible to generate new itemset, then algorithm complete the first 

and important step on algorithm, that calculate actual support for all generated itemset set. 

After this we will go to generate or separate the frequent itemset (Lf), as definition the all 

itemset that have actual support that greater than MinSupp, entered by user. This process 

will allow us to generate many frequent itemset with deferent MinSupp, and this is not 

available in a lot of ARM algorithms. 

      GetFrequentItemset(MinSupp,Ln) 
6.   {     
7.    foreach( item in Ln) 
8.      if(item.support>= MinSupp) 
9.        LF.add(item); 
10. } 
      

Figure3.8: INAP learning algorithm – GetFrequentItemset Method 
 

To this point of algorithm, we have come to the end of the first and most important 

stage in the algorithm, to find complete itemset with it support. Now we will go to next 

stage to separate frequent itemset (LF), and generate strong rule. Algorithm get (LF) by 

calling the GetFrequentItemset(MinSupp,Ln) Method. The main process of this method 

is to check the support for every itemset in (Ln ) list, if the itemset support greater than 
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MinSupp, add this itemset in (LF) to become frequent itemset. Of course, this method can 

be executed and get different (LF) with MinSupp for each, without the need to scan original 

database. 

 
While the above method is the most important part of algorithm, we will present 

partial example for generate a candidate set. 

Example 3.1: In table 3.5 appear first itemset 

(L1), now, GenerateCandidates Method will be 

applied to find L2, first step for all itemset in L1 join 

to other the output of this step is itemset appear in 

Table 3.2 (AB,AC,AD,BC,BD,CD). 

The next step in GenerateCandidates method is to make intersection for each new 

itemset from original itemset. AB come from union A itemset, and B itemset then to find 

AB.TID, need to intersection between A.TID and 

B.TID.  

A.TID ⋂ B.TID =  

{1,3,4,5} ⋂ {1,4,5,6,7} = {1,4,5}, which 

contain three transaction id, this imply AB.Support 

=3. And so on for all itemset, C2 (Table 3.6).  

 By applying GetItemset in Figure3.6 to the 

list appear in Table 3.2,Since AD,BD,CD support 

equal zero, then avoid from L2, As appear in Table 

3.7.  

The importance in the algorithm it came to dealing with discovering frequent itemsets 

incrementally, and here we will review an important function that work helped to 

accomplish that. The first instruction is reading the n itemset Ln (last time discovered), in 

order to modify them and add new changes in the database. In Figure 3.7 function is 

considered one of the most important among the algorithm functions and instructions. The 

PreperTransactionList, this method aims to classify the manipulated transaction, either 

Table 3.5: Example 3.1 L1 itemset  
Itemset Support TID 
A 4 {1,3,4,5} 
B 5 {1,4,5,6,7} 
C 4 {2,3,4,5} 
D 3 {8,9,10} 

Table 3.6: Example 3.1 C2 itemset 
Itemset Support TID 
AB 3 {1,4,5} 
AC 3 {3,4,5} 
AD 0 {} 
BC 2 {4,5} 
BD 0 {} 
CD 0 {} 
 

Table 3.7: Example 3.1 L2 itemset 
Itemset Support TID 
AB 3 {1,4,5} 
AC 3 {3,4,5} 
BC 2 {4,5} 
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added, updated or deleted transactions. Of course we classify transaction that manipulated 

after the last date for discovery large itemset (Ln). Functions need two in put parameter 

LogF, KD, by definition in previous section the KD, is the date of the last time execution.  

LogF, contain the history of tractions action (add, update, delete). There are three output 

LTA, LTU, LTD, lists of added, updated, deleted transactions respectively. 

PreperTransactionList(out LTA, out LTU ,out LTD, in LogF, in KD) 
1. {        
2.  openFile(LogF); 
3.  Foreach (row in LogF| row.date> KD) 
4.  { if(row.ActionType =  Add) 
5.     LTA.add(row.TID); 
6.    Else if (row.ActionType =  update) 
7.     LTU.add(row.TID); 
8.    Else if (row.ActionType =  Del) 
9.     LTD.add(row.TID); 
10. } 
11. } 

 
Figure3.9: INAP learning algorithm – PreperTransactionList Function 

 

After preparing the lists LTA, LTU, LTD, of course, these lists as it was full meaning 

in database have a reflection on the discovered Knowledge (Ln). We will be dealt with list 

in two ways. The first way for LTD, and LTU, need to discount the itemsets support, for 

each itemset have in TID one of the transaction ID in LTD, and LTU. we will see this 

reflection when we review DiscardTransaction(in LTU, in LTD) function. The second 

way for compilation of existing TID in LTA, and LTU, which will be considered are the 

source data to calculate the support for itemset. 

Now will be trace internal function instruction. First Command openFile(LogF), 

and this allow the processor reading LogF. The second instruction Foreach (row in 

LogF| row.date> KD), this command fetch the all row in LogF that added to file after 

KD date. Next one is Condition for rows have Action Type is add, will TID (Transaction 

ID that row refer it) added to LTA List, when rows have Action Type is delete, will TID 

added to LTD List. When rows have Action Type equal to update, then TID will be added to 

LTU or added to LTD, LTA, because when action type is update need to remove old effect in 

knowledge, and add new effect for updated Transaction. 
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The next Method DiscardTransaction, is simple method, but has high importance. 

This has function to discard the itemset support for updated and deleted transaction. When 

the support of itemset depend to updated or deleted transition, and TID exist in itemset 

transactions ID list. I believe the method instruction is clear, and do not need to explain. 

DiscardTransaction(in LTU, in LTD) 
10. { 
11. Foreach(item in LN) 
12.   { 
13.     Foreach(TID in (LTU ⋃ LTD)) 
14.      { 
15.       If(item.transaction.exist(TID) 
16.        { 
17.         Item.support--; 
18.         Item.transaction.remove(TID); 
19.     } 
20.  } 
21. } 
22. } 

 

Figure3.10: INAP learning algorithm – DiscardTransaction Function 
 
 

3.4. Rule Generation  

Similarly approximately to extract (Lf) we can extract Rule, or many Rule with 

different MinConf. The best we have to be honest with ourselves and say the 

GetStrongRules was Similar and almost completely to the normal Apriori function to 

generate strong rule from frequent itemset. 

Now we come to the last Method that aims to generate strong rule from (LF) list. The 

main problem in incremental ARM, how to get frequent item set incrementally, and it state 

main problem in ARM (Xu, and Wang, 2006; Chang, Li, and Lee, 2005; Han, Pei, and Yin, 

2000). We focused on our research project how to get frequent itemset. However, we took 

generate strong rule, as most completely similar to original Apriori generation rule 

function. Moreover, we can see the pseudocode function for generation rules in Figure 3.9. 

 

INAP consists rule generation, INAP computes the complete set of rules in the form 

of Rule: A → B, where A, B is a frequent itemset, where B itemset length 1. We have built 

the algorithm to generate consequence contain only one item. Built as well as give 
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consequence length one item. Our work because most of other fields data mining or 

application needs to sequence length one item, for ease of use or make generalization to 

using algorithm in other fields. The rule has support and confidence, greater than given 

support and confidence thresholds.  

In the GetStrongRules function as we show Figure 3.11, for each itemset in frequent 

itemset separate to two sides (antecedent, and consequence) to generate association rule, 

and calculate the confidence for rule and if the rule confidence greater then MinConf, then 

add rule to the strong rule list.    

  GetStrongRules(MinConf) 
1.  { 
2.   Foreach( item in LF) 
3.    { 
4.     LHS = item.subList(0, length-1); 
5.     RHS = item.sublist(length-1, length);                    
6.     Rule= LHS +”>” RHS ;  
7.     Rule. Confidence = item.support/ RHS.support; 
8.        if(Rule.confidence> MinConf) 
9.       Rulelist.Add(Rule); 
10. } 
11. } 

 
Figure 3.11: INAP learning algorithm – GetStrongRules Function 

 

3.5. Comparison of INAP & other ARM Approaches  

While our algorithm is enhancement of Apriori algorithm, in this section we will 

make comparison between INAP algorithm from side, and Apriori algorithm. On other 

hand, where the INAP consideration incremental learning, we will make comparison 

between our algorithm and other algorithms in incremental learning field. 

Ø Apriori  

The INAP algorithm is similar to Apriori algorithm and this normally, because INAP 

is improve for apriori. However, similar does not mean it is completely identical, although 

the results are completely similar, we can see the similarity on the result in Experimental 

Results section, of course the similarity in the output knowledge. We can identify the 

difference in two main points:  
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1- The INAP, scan database once time to find L1. After this to calculate the support for 

new itemset generated make intersection between itemsets compiled. In the Apriori 

for every itemset generated need to rescan original database (DB, db+). 

2- The Apriori pruning in candidate set generate itemsets, which have support less than 

MinSupp, and put itemset generated in the frequent itemset. In the INAP pruning 

condition for itemsets have support zero, and put the generated itemsets in complete 

itemsets (LN), from (LN), the user can generate Multi frequent itemset (LF), 

according to the entered value. Generate rule similar to frequent itemsets, in Apriori 

the output one rule set that have MinConf predetermined, in the INAP the user can 

generate many rule set see Figure3.1. Of course and we see the comparison 

experiment result in experiment section.   

 

Ø Incremental algorithms  

There are good attempts to propose algorithm to deal with incremental learning for 

ARM (Chang, and et. at, 2005; Bachtobji, & Gouider, 2006; Zhou, and Ezeife, 2001). They 

went ahead in the field, but also still some of defect in other approaches such as:  

Ø Don’t take all manipulation operation for database, as we said earlier, that 

most incremental don’t take the basic operation on database. Proposed 

algorithm mostly adapted to the incremental knowledge discovery linked to 

the add operation, on the basic that the old data (in database) is stable and 

did not get them any change, or deleted. This is contrary to the nature of life, 

system, and data. 

In proposed algorithm INAP, takes consideration all operations: insert, 

update, and delete. This means that extracted knowledge is always and ever 

reflects the reality of the data. 

Ø  Some of algorithm gets frequent Itemset without actual support (s) (FUP, 

NFUP), there algorithm need to rescan source database, to check if 

infrequent itemsets become frequent or no (MAAP). In algorithm presented 

INAP addressed these problems and solved it. Naturally, when avoid some 
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of manipulation operations, then lacking credibility of actual support that 

once. The second reason, assuming that there is an itemset (i) is infrequent 

over DB, and when extracts knowledge from db+ i become frequent. Until 

we achieve that i is frequent over all database (DB, db+), we must rescan all 

database. 

In INAP, retain the value of support for itemsets, even if the itemset is 

infrequent, in complete itemsets, when apply algorithm over determined 

MinSupp, the user can get the frequent itemsets at these moment of time 

without need to rescan database. 

There other reason to have frequent itemsets without the actual support, 

such as MAAP algorithm, where start discovery frequent itemset from level 

n, this imply getting the all subset from frequent itemset in level n as 

frequent itemset in next level (n-1). Without have actual support for frequent 

itemset in (n-1,n-2,…) level.  

Ø Other defect, changing in thresholds by user. In IMSC approach there 

attempt to deal with important issue in the incremental learning, that changes 

in thresholds when generate, but the approach avoid main issue, where need 

to rescan database in some cases. In INAP algorithm, solve the changes in 

thresholds in a professional manner and precise.  

We will summarize the main differences between incremental algorithms in next 

table: 

 

Table 3.8: Comparison between INAP and incremental algorithms 

Algorithm Add Update Delete Rescan solved The support accuracy Threshold changes 

FUP P O O O O O 

NFUP P O O O O  

IMSC P O O O O P 

MAAP P O O O O O 

INAP P P P P P P 
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3.6. Detailed Example 

Example 3.2: Consider the database presented in Table 3.9 with a MinSupp 

requirement is 50% and there is no existing old result (Ln Is Empty). The database includes 

4 transactions. Accordingly, the supports of the frequent itemsets are at least 2. The first 

column “TID” includes the unique identifier of each transaction, and the “Item” column 

lists the set of items of each transaction. Table 3.10 contain log file, documenting the 

operation that occur on database . 

 

 

 

 

According to algorithm INAP (Figure3.2), firstly need to read last result, where the 

last result does not exist then the last result is empty set. Secondly, will prepare 

classification for TID in Log file based on the [ActionID] (preparing LTA, LTU, and LTD 

lists) LTD, and LTU is empty list, LTA is {1, 2, 3, 4}. While last result does not exist then 

DiscardTransaction function will not applied. Thirdly, the algorithm applying GetL1Items 

function, to scans the original database (specifically fetch the transaction, that TID exist in 

(LTA ∪ LTU)) and counts 1-itemsets (L1) List with their support and transaction ID List 

(<TID>), they located to make it easily finding such transactions, see table below (Table 

3.11). 

Table 3.11: 1-itemsets (L1) (Example3.2) 
ListIndex Itemset Support <TID> 
1 a 3 1,3,4 
2 b 3 1,2,4 
3 c 3 2,3,4 

 

After get (L1), passing it to GenerateCandidates function, to generate Candidate 

itemset of size 2, C2 and count their support by intersection the (L1) : ab.TID = a.TID ∩ 

b.TID = {1,3,4} ∩ {1,2,4} = {1,4} then support of ab is 2. 

ac.TID = a.TID ∩ c.TID = {1,3,4} ∩ {2,3,4} = {3,4} then support of ac is 2. 

Table 3.9: An Example of a transaction 
database (Example3.2) 

 Table 3.10: Log File 1 (Example3.2) 

TID Item  TID ActionID Date 
1 ab  1 1 2012/05/18 12:30 
2 bc  2 1 2012/05/18 12:35 
3 ac  3 1 2012/05/18 12:40 
4 abc  4 1 2012/05/18 12:42 



46 
 

bc.TID = b.TID ∩ c.TID = {1,2,4} ∩ {2,3,4} = {2,4} then support of bc is 2, and we 

have got the (L2) itemset that appear in (Table3.12). 

Table 3.12: 2-itemsets (L2) (Example3.2) 
ListIndex Itemset Support <TID> 
1 ab 2 1,4 
2 ac 2 3,4 
3 bc 2 2,4 

 

The next steps, generate C3, and make intersection between ab, ac or ac, bc TID List, 

the result intersection {4}. Then the abc.support =1. Since L3 is only one item, then no 

more candidate itemset can generate .The final complete itemsets Ln is discovered, and can 

we show in Table3.13. Now can find LF by take all itemset in Ln that have the support 

greater than or equal MinSupp(50%= 2 transaction),  then the frequent itemset LF can see 

in Table 3.14.  

Table 3.13: Complete itemset Ln (Example3.2) 
ListIndex Itemset Support <TID> 
1 a 3 1,3,4 
2 b 3 1,2,4 
3 c 3 2,3,4 
4 ab 2 1,4 
5 ac 2 3,4 
6 bc 2 2,4 
7  abc 1 4 
    

Table 3.14: Frequent  itemset Lf (Example3.2) 
ListIndex Itemset Support <TID> 
1 a 3 1,3,4 
2 b 3 1,2,4 
3 c 3 2,3,4 
4 ab 2 1,4 
5 ac 2 3,4 
6 bc 2 2,4 

 
And finally, the rules are generated as follows (Table3.15): 

Table 3.15: Rule set (Example3.2) 
ListIndex Itemset confidence 
1 a->b 66.6% 
2 a->c 66.6% 
3 b->a 66.6% 
4 b->c 66.6% 
5 c->a 66.6% 
6 c->b 66.6% 
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To this, we got to the end of algorithm, and built knowledge of nothing. In order to become 

an incremental approach clear in the algorithm, we’re going to see in the complementary 

example. 

Example 3.3: (complementary example for example3.2) Consider the database 

presented in Table 3.16. With a MinSupp requirement is 50%, the last result exist in 

complete itemset list (Ln) in (Table 3.13). The database includes 4 transactions. Table 3.17 

is log file. 

Table 3.16: An Example of a transaction 
database (Example3.3) 

 Table 3.17: Log File 1 (Example3.3) 

TID Item  TID ActionID Date 
. 
. 
. 

. 

. 

. 

 . 
. 
. 

. 

. 

. 

. 

. 

. 
4 ac  3 3 (delete) 2012/05/19 12:35 
5 ab  4 2 (update) 2012/05/19 12:40 
6 abc  5 1(add) 2012/05/19 12:42 
 

 
 6 1(add) 2012/05/20 12:42 

· Last results exist in (Table 3.13). 

·  Will prepare classification for TID in Log file based on the [ActionID] (preparing 

LTA, LTU, and LTD lists), LTA is {5, 6}, LTU is {4}, LTD is {3}. 

·  Now will discount for all itemsets in Ln (Table 3.13) that contain any TID from 

(LTA ∪ LTU) in itemset <TID>. (LTA ∪ LTU) = {3, 4}, Ln after discount support 

and remove TID exist in (LTA ∪ LTU) from <TID>. 

Table 3.18: Complete itemset Ln after Discount support and 
remover TID in (LTA ∪ LTU)   (Example3.3) 

ListIndex Itemset Support <TID> 
1 a 1 1 
2 b 2 1,2 
3 c 1 2 
4 ab 1 1 
5 ac 0  
6 bc 1 2 
7  abc 0  

 

 
 

· Get L1 itemset, fetch the transaction, that TID exist in (LTA ∪ LTU) and counts 1-

itemsets (L1) List with their support and transaction ID List (<TID>). (LTA ∪ LTU) 

= {4, 5, 6}. 
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Table 3.19: 1-itemsets (L1) (Example3.3) 
ListIndex Itemset Support <TID> 
1 a 3 4,5,6 
2 b 2 5,6 
3 c 2 4,6 

 

· Merge 1-itemset (Table 3.19), with Ln (Table 3.18). merge result in Table 3.20 

Table 3.20: Complete itemset Ln after merge with 1-itemsets   
(Example3.3) 

ListIndex Itemset Support <TID> 
1 a 4 1,4,5,6 
2 b 4 1,2,5,6 
3 c 3 2,4,6 
4 ab 1 1 
5 ac 0  
6 bc 1 2 
7  abc 0  

 
 

· After get (L1), passing it to Generate Candidates C2,  and count their support by 

intersection the (L1) :  

ab.TID = a.TID ∩ b.TID = {4, 5, 6} ∩ {5, 6} = {5, 6} then support of ab is 2. 

ac.TID = a.TID ∩ c.TID = {4, 5, 6} ∩ {4, 6} = {4, 6} then support of ac is 2. 

bc.TID = b.TID ∩ c.TID = {5, 6} ∩ {4, 6} = {6} then support of bc is 1. 

Table 3.21: 2-itemsets (L2) (Example3.3) 
ListIndex Itemset Support <TID> 
1 ab 2 5,6 
2 ac 2 4,6 
3 bc 1 6 

 

· Merge 2-itemset (Table 3.21), with Ln (Table 3.20). merge result in Table 3.22 

Table 3.22: Complete itemset Ln after merge with 1-itemsets   
(Example3.3) 

ListIndex Itemset Support <TID> 
1 a 4 1,4,5,6 
2 b 4 1,2,5,6 
3 c 3 2,4,6 
4 ab 3 1,5,6  
5 ac 2 4,6 
6 bc 2 2,6 
7  abc 0  
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· The next steps, generate C3, and make intersection between ab, ac or ac, bc TID List, 

the result intersection {6}. Then the abc.support =1, merge L3 (Table 3.23) with Ln 

(Table3.23). Since L3 is only one item, then no more candidate itemset can generate. 

Table 3.23: 3-itemsets (L3) (Example3.3) 
ListIndex Itemset Support <TID> 
1 abc 1 6 

 

· The final complete itemsets Ln is discovered, and can we show in Table3.24. Now 

can find LF by take all itemset in Ln that have the support greater than or equal 

MinSupp(50%= 2.5(3) transaction),  then the frequent itemset LF can see in Table 

3.25.  

Table 3.24: Final complete itemset Ln (Example3.3) 
ListIndex Itemset Support <TID> 
1 a 4 1,4,5,6 
2 b 4 1,2,5,6 
3 c 3 2,4,6 
4 ab 3 1,5,6  
5 ac 2 4,6 
6 bc 2 2,6 
7  abc 1 6 

 
 

Table 3.25: Frequent  itemset Lf (Example3.3) 
ListIndex Itemset Support <TID> 
1 a 4 1,4,5,6 
2 b 4 1,2,5,6 
3 c 3 2,4,6 
4 ab 3 1,5,6  

 
And finally, the rules are generated as follows: 

Table 3.26: Rule (Example3.3) 
ListIndex Itemset confidence 
1 a->b 75% 
3 b->a 75% 
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3.7. INAP Distinguished Features  

The INAP algorithm Presented has characteristic and features that distinguish it from 

other algorithm ARM, specifically incremental algorithms, her we will state many feature: 

Ø The first and feature important one, INAP takes into minding three manipulation 

operations for database in association rule mining: add, update, and delete. Most the 

algorithm does not take these operations, therefore when it comes to mining they 

require complete scan over the update database (old database DB and new data db+) 

to update the knowledge.   

Ø Horizontal data format is a good thing in order to accelerate database operations. For 

that, INAP algorithm allow user to use horizontal format in the database, 

alternatively, and in the first scan to find L1, represent the output data into vertical 

layout (Tid List). A recursive philosophy based on intersection to discover itemset, 

which requires only one scan.  

Ø The Data Mining approach and algorithms generally, and the ARM algorithm 

especially, to find knowledge must using thresholds: minimum support and minimum 

confidence. In fact, this is the bottleneck to work in the discovering Knowledge. So, 

if extracted knowledge on certain threshold (minimum support: S%; minimum 

confidence: C%). When you change the value of (S% or C%), you need to rescan 

database and to applying all algorithm process and task, to deal with the new changes. 

In our algorithm you can extract many knowledge with different threshold, without 

need to rescan database. 
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3.8. Experimental Results 

In this section, we describe experimental study and results, to measure the relative 

performance of our proposed algorithm. The algorithm was implemented and tested on 

Intel compatible with processor i5 and 4 GB of main memory running the Microsoft 

Windows 7 operating system. 

As said previously, the algorithm can read database formatted with horizontal layout. 

After fetching data, representing it to vertical layout. We present the database schema for 

two main tables and instance for each data. The first table refers to items defined in the 

system, and contains  Item_ID, Item_Name for each item as Shown in Table 3.27. The 

second table for register sales items and it contains basically two attribute T_ID, Item_ID 

Table 3.28.  

Table 3.27: Data scheme for items 
Item_ID Item_Name 

1 Biscuit 
2 Bread 
3 Juice 
4 Milk 
5 yoghurt 
6 Coffee 

 

Table 3.28: Data scheme for Sales items 
T_ID Item_ID 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
2 1 
2 2 
2 4 
3 4 
3 5 
3 6 
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 The implemented algorithm was run against data with (100- 100000) transactions. 

We obtained the data from (Apriori Dataset). Also, the implemented algorithm allows to 

user insert, update, delete transactions, and the program generates automatically random 

transactions of any size. As we see in the Figure 3.12, user can enter number of transaction 

that would insertion in (Transaction Numbers) box appearing in the below figure. After 

inputting, and if  the inserted number is large in size, the algorithm utilizes a damp function 

that inputs the new transactions to the database. The number of transactions the user inputs 

can be added, and the program then inserts the new transactions. 

 

Figure 3.12: Implemented Algorithm- insert, delete group of transactions  
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(Figure 3.13 shows the “Transaction Form”, which the user can insert transactions 

one by one, delete transactions, and update existing transactions. Larger data size can be 

inputted or deleted using the damp function mentioned earlier. 

 
 

Figure 3.13: Implemented Algorithm- Transaction From  

Here, in the (Figure 3.15), we show an important form in the program “incremental 

Apriori (INAP) form”. This form displays the classification transactions (add, update, and 

delete). Users can enter thresholds (MinSupp, MinConf) in this screen, and the result tab 

outputs frequent itemsets, and association rules. 

 
 

Figure 3.15: Implemented algorithm- Incremental Apriori (INAP) Form 
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Experiments have been contacted on different data sets based for supermarket 

databases from (Apriori Dataset). Moreover, we have experimented through our program, 

which described earlier. We compared our model with Apriori, because our algorithm is an 

incremental enhanced of Apriori. The comparisons have many criteria the: frequent itemset 

number, the support value, also rule set size, the rule set confidence. The basic criterion for 

comparison is the execution time. 

Here, in this experiment, we compare the Apriori and INAP using some criteria, as 

shown in (Table 3.28, Figure 3.15). We apply two algorithms with deferent dataset sizes 

with the same thresholds (MinSupp=1%, and MinConf =10%). The size of frequent itemsets 

and the numbers of rules is similar for INAP and Apriori algorithms. Since both algorithms 

depend on Minsupp & Minconf parameters, in additions to the similarity in the number of 

result set, there was similarity in the value of support for frequent itemsets, and rule 

confidence for fair comparison. Table 3.29, and Figure 3.15, show the execution time, 

where time has been reduced an average of less than one-third. When you show the count 

of the frequent itemset, and rule number, will appear the same but realty the value of 

support and confidence change every time. 

 

Table 3.29: Experimental results, for dataset with different each time increase 1000 transaction  

# of Transaction 
Time (millisecond) Frequent itemset Rule 
INAP Apriori INAP Apriori INAP Apriori 

1000 270 950 63 63 186 186 
2000 280 580 63 63 186 186 
3000 200 400 63 63 186 186 
4000 100 350 63 63 186 186 
5000 150 560 63 63 186 186 
6000 250 1000 63 63 186 186 
7000 260 600 63 63 186 186 
8000 240 900 63 63 186 186 
9000 245 700 63 63 186 186 
10000 240 600 63 63 186 186 
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Figure3.15: Running time under different total number of transaction size in milliseconds 
 

Here, in this experiment we compared the Apriori and INAP using some criteria, as 

shown in (Table 3.30, Figure 3.16). We apply two algorithms with different thresholds 

values, with the same dataset size (5000 Transaction). We show the output knowledge, the 

size of frequent itemset, and number of rules.  

Table 3.30, Figure 3.16, display the reduction in the execution time, when the 

reproduction of knowledge base on the new threshold. Time has been reduced an average 

of less than 0.1 millisecond, which is an achievement. Meaning, one can extract knowledge 

with different thresholds in time less than one in ten of millisecond (0.1 millisecond). 

Table 3.30: Experimental results, for dataset with different MinSupp threshold 
MinSupp threshold Time millisecond Frequent itemset Rule 

INAP Apriori INAP Apriori INAP Apriori 
1% 100 600 63 63 186 186 
5% 0.07 680 63 63 186 186 
10% 0.07 690 63 63 186 186 
15% 0.07 650 63 63 186 186 
20% 0.07 530 56 56 150 150 
25% 0.07 970 41 41 90 90 
30% 0.07 900 21 21 30 30 
35% 0.07 950 21 21 30 30 
40% 0.07 130 6 6 0 0 
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Figure3.16: Running time (milliseconds) under different thresholds for the same transaction size  
 

The performance of the proposed algorithm has been evaluated in regards to the 

aspect of efficiency define. For the rule accuracy, the INAP generates similar results. In 

Figures 16-17, both rule set count, or frequent itemsets, and F1 in (Table3.31, Figure 3.17) 

correspond to the time needed to find frequent items of sizes 1. Denote the time needed to 

transform data from horizontal format to vertical format. In these experiments, we have 

used different MinSupp values where we have lowered the MinSupp in some cases to 3% 

and used different dataset size varying from 2 - 4 Million transactions.  Figure 15 shows the 

time taken to transform the data to item-space when MinSupp equals 3% including the 

generation of 1-frequent items.  

Table 3.31: Experimental results- for Find 1-frequent itemset, for 
different dataset size  

# of Transaction 
Time (millisecond) Frequent itemset 
INAP Apriori INAP Apriori 

1000 160 150 6 6 
2000 250 500 6 6 
3000 170 300 6 6 
4000 85 350 6 6 
5000 150 300 6 6 
6000 200 500 6 6 
7000 250 450 6 6 
8000 240 550 6 6 
9000 230 400 6 6 
10000 235 450 6 6 
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Figure3.17: Running time (milliseconds) to discover 1-itemset for different dataset size  

 

3.9. Chapter Summary 

In this chapter, the problem of using incremental ARM approaches in data mining has 

been investigated. The outcome is a new effective incremental ARM algorithm, INAP, that 

made enhancement to Apriori algorithm. INAP has got a number of new features over other 

existing techniques.  The proposed algorithm is able to handle the changes that get in the 

thresholds. This gives the power of the algorithm, because, in fact, the changes in threshold 

are possible and frequent.   In itemset discovery, INAP presents a fast intersection method 

that requires only one database scan, consuming less processing time than other multi scan 

database approaches. 

In the next chapter, we will provide conclusions, and weaknesses that could be 

existed in the proposed algorithm. This problem will be solved in the coming researches, by 

any researcher in this field.    
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Chapter Four 

 

Conclusions and Future Work 

 

4.3. Conclusions  

In this thesis, an Apriori algorithm is developed to perform discover association rule 

and frequent itemset incrementally. Through Apriori, discovery of the knowledge, either 

frequent itemset, or itemset, is through a full scan of database and frequent rescan. The 

Apriori has many features; the most important of these features are: the knowledge 

produced through Apriori reflect the real current state of the data in the database, and in a 

professional manner. We all know that database unstable, that there are manipulations 

operations occurring continuously on database, whether to delete, update existing records, 

or add other new records. The volume of data in database is growing rapidly with time, 

according to the system and the environment. Apriori, despite its many features, becomes a 

problem, which requires knowledge discovery, a full scan of database, and iteration rescan.  

There are many algorithms that where proposed to deal with the problem, in serious 

attempts to get the knowledge incrementally. Some of these algorithms FUP, NFUP, IMSC, 

MAAP, offered these algorithms, many creative ideas to solve the incremental learning. 

With knowing that algorithms (FUP, IMSC, MAAP), came essentially based on Apriori, 

NFUP came as enhancement for FUP. All previous algorithms acquired Apriori properties. 

However, there many defects still existed in current approaches such as:  

a. The current algorithms don’t take all manipulation operation for database, where 

adopted only add operation, for transactions are added to the database, and ignored 

the update and delete operations.  

b. Get frequent Itemset without actual support (s), for two reasons: the first one 

suppose that X is itemset on DB, most of the algorithms consider that  X will remain 

frequent forever ( with ignored effect of update, delete operation), and this not 

correctly, it possible to delete or update those transactions that have X itemset 
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between it item. The second reason, where MAAP algorithm gets the highest level 

of itemset, and test is frequent or no, if it frequent split it to subset frequent itemset 

without scan database, and unknown actual support for subset. 

c. The algorithms rescan all source databases, to check if infrequent itemsets become 

frequent or no. 

The proposed algorithm INAP utilizes the incremental association mining efficiently, 

to maintain the frequent itemset, and rule set incrementally. As a direct consequence of this 

usage, INAP performs never rescan original database (Scand database), and scan only 

added or updated transactions, taking into consider the transactions deleted. By using INAP 

the user can create many instances for output knowledge, according to input thresholds. 

Several experiments have been tried to make sure the performance of the algorithm 

compared with Apriori. We focused in experiments on the execution time of the algorithm, 

was a satisfactory result to a good extent. 

 

4.4. Future Work 

Much work can be done in future in this area of research. There are some  suggestions 

which have been rejected by other researchers. Many people may wonder why this could 

happen. In all cases, I show entire  appreciation and respect for all researchers: 

 

Ø Negative association rule 

ARM is an important task in data mining. There are two main types for 

association rule. The type was studied in this thesis is the positive type; this type 

is typical association rule. Search for itemset, and rule in transactions in the 

database.  

For example A → Y, where A, Y, and A∪Y is frequent itemset, and occur 

frequently in database, as we review in chapter two, there are a lots of algorithm 

dealing with this type. 
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     The second type is called negative association rule. This type of rule negates 

the correlation. A confined negative association rule is one of the following:  

X ¬ Z, 

¬X  Z, 

or ¬X  ¬ Z, where the entire antecedent or consequent must be 

conjunction of the negated attribute or a conjunction of non-negated attribute (Mani, 2012). 

The meanings of the above rule, for example the first rule X   ¬ Z, the 

transactions that contain X itemsets, don’t contain Z itemsets. The common bottleneck in 

the approaches for association rule generation is “Support, Confidence”, in the negative the 

calculated support is complicated (Mani, 2012). In this thesis, it easy to find the support of 

itemsets, either negated or non-negated itemsets, because there are lists contain all 

transaction ID for all itemset, we can find support of itemsets only by intersection lists.    

The research in our field ”ARM”, can extend the proposed algorithms INAP, to deal 

with the negative association rule generation. 

 

Ø Algorithm Idea Generalized 

For most data mining task, we need  discovery itemsets, and need to calculate the 

support for them. This common problem, how to generate the frequent itemsets with actual 

support, is the main obstacle for most data mining tasks (Mani, 2012). Incremental 

problem: an important problem that is faced in data mining process is continuously 

evolving new data, and modified existing data. It is necessary that existing approaches of 

classification, clustering, and other data mining task, tackle this in such a way that the 

classifier is tuned-in to accommodate it (Joshi, and Kulkarni, 2012). 

It is important to make a comparison between the present approach in this thesis and 

approaches proposed in other data mining task. If the present algorithm has got results 

better than other algorithms, then generalization of our algorithm approach can be made for 

other tasks. 
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  الملخص

تعدین القواعد الجمعیة یعتبر واحد من أھم الأعمال في تعدین البیانات، والذي جلب الكثیر من 

قواعد الجمعیة بطریقة إبداعیة وذكیة  تقوم على إیجادخوارزمیة ابرویروي . الإنتباه من اللجان البحثیة

. وعلى مقیاس كبیر لقواعد البیانات، وتعتبر واحدة من أھdم الخوارزمیdات لإستكشdاف قواعdد الجمعیdة

القواعdد ( المشكلة الرئیسیة المرتبطة بأبرویروي ھي المسح المتعdدد لقواعdد البیانdات لإیجdاد المعرفdة 

وتزداد صعوبة المشكلة عندما تكبر قواعdد البیانdات مdع . مرةث قواعد البیانات كل یتحد عند) الجمعیة

النتائج المكتشفة من البیانات الأصلیة تحتاج عنdد تعdدین مجموعdة مdن البیانdات المعدلdة تحتdاج . الوقت

  .إلى تحقق من صحة المعرفة التي حصلت في وقت سابق

خصوصddا فddي . زایدیddةالبddاحثون إقترحddوا العدیddد مddن الخوارزمیddات للتعامddل مddع المشddكلة الت

قدمت الكثیر . التطبیقات التي تتغیر في البیانات في قواعد البیانات بشكل مستمر مثل التطبیقات البنكیة

وعنÆدما . FUP, IMSC, MAAPمن الخوازمیات حلا للمشكلة علdى نحdو ذكdي، مثdل الخوارزمیdات

  :قمنا بمراجعة نظرات التعلم التزایدي الحالیة وجدنا بعض العیوب مثل

  .لم تأخذ كل عملیات معالجة البیانات، وخصوصا عملیة التعدیل -1

 .ھذه الخوارزمیات تستدعي إعادة مسح قواعد البیانات عدة مرات -2

  .في قواعد البیانات ترددھا بعض ھذه الخوازمیات یستكشف المعرفة بدون نسبةِ  -3

 Incremental)ى ابرویÆÆروي التنزایدیÆÆةتÆÆدع الأطروحÆÆة  ھÆÆذه فÆÆي ةَ المقترحÆÆ الخوارزمیÆÆةَ  إنّ 

Apriori (INAP))  ، ة  .المذكورة أعلاه المشاكلِ  مع تعاملُ ت وھيÆد الجمعیÆكل إنھا تعدین لقواعÆوبش

تأخذ الخوارزمیة كÆل . تزایدي ولا تحتاج إلى إعادة مسح قواعد البیانات القدیمة عندما تجلب التحدیثات

بان عنÆدما تعÆدن مجموعÆة جدیÆدة مÆن فÆي الحسÆ) الحذف، التعدیل، والإضÆافة( عملیات معالجة البیانات 

لنا لإستخراج المعرفة بعتبات ) INAP(تسمح خوارزمیة . البیانات دون العودة لمسح البیانات الأصلیة

مÆرات عدیÆدة ودونÆم الحاجÆة إلÆى ) الثقÆة –ونسبة قÆوة القاعÆدة نسبة تكرار في قواعد البیانات، ( مختلفة 

  .ا یعني إنھ تم حل مشكلة التزاید في القواعد الجمعیةالرجوع إلى قواعد البیانات مرة أخرى، وھذ
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