

Semantics based Assessment of the Robustness Quality
Attribute of Web Services

By

Marwan Fayez Almomani

Supervisor

Dr. Samer Hanna

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

August 2014

II

 جامعة فيلادلفيا

 نموذج تفويض

أفوض جامعة فيلادلفيا بتزويد نسخ من رسالتي للمكتبات أو المؤسسات ،مروان فايز عبدالله المومنيأنا
 .أو الهيئات أو الأشخاص عند طلبها

 :التوقيع

 :التاريخ

Philadelphia University

 Authorization Form

I am, Marwan Fayez Abdullah Almomani, authorize Philadelphia University
to supply copies of my thesis to libraries or establishments or individuals upon
request.

Signature:

Date:

III

6BSemantics based Assessment of the Robustness
Quality Attribute of Web Services

By

Marwan Fayez Almomani

Supervisor
Dr. Samer Hanna

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

August 2014

IV

Successfully defended and approved on _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Examination Committee Signature Signature

Dr. , Chairman. _ _ _ _ _ _ _ _ _ _ _ _
Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _
Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _
Academic Rank:

Dr. , External Member. _ _ _ _ _ _ _ _ _ _ _ _
Academic Rank:

V

DEDICATION

I fully dedicate this work to:

To my father " Fayez Almomani"

And my mother "Ibtisam Almomani"

And my great wife "Duaa Almomani"

And my two sons " Hamzah and Abdalrahman"

And my brothers and sisters “Amer, Omer, Bothina and Rowida”

For being the most important part of my dream

For the support, courage, and unconditional love.

 Marwan F. Almomani

VI

ACKNOWLEDGMENT
Above all, Thanks to Allah, before and after everything, for giving me the knowledge and

ability to complete this work in this final form.

It would not have been possible to write this master thesis without the help and support of

the kind people around me, to only some of whom it is possible to give particular mention

here.

I would like to express my thanks and sincere gratitude for who has guided me through my

study and my thesis work; my supervisor Dr. Samer Hanna, for giving the wisdom,

strength, support and knowledge in exploring things.

I would like to express my gratitude, my appreciation and my respect to the best Dr. in

Philadelphia university Prof. Saeed AL-Ghoul for his humanity, his humility and his

unlimited support for graduate students.

Also I would like to express my sincere thanks to the staff of the college who provide a

warm and lively environment to encourage and help graduate students in their graduate

study especially Dr. mo’uad ala’dami and Dr. Nameer Al-Emam.

Lastly, I would express my great thanks to all my friends at work and at Philadelphia

University.

 Marwan F. Almomani

VII

TABLE OF CONTENTS
Authorization Form ... II

Thesis Title ... III

Examination Committee ... IV

Dedication ... V

Acknowledgment ... VI

Table of Contents ... VII

List of Tables ... X

List of Abbreviations ... X

List of Figures .. XI

1 Chapter One: INTRODUCTION .. 1

1.1 Introduction ... 2

1.2 Web Services advantages and challenges ... 2

1.3 Research Problem .. 4

1.4 Motivation ... 5

1.5 Research Objectives .. 5

1.6 Research Contributions ... 5

1.7 General structural Design .. 6

1.8 Thesis Outline ... 6

1.9 Summary ... 6

2 Chapter Two: BACKGROUND .. 7

2.1 Introduction ... 8

2.2 Web Services ... 8

2.3 The Web Services Model .. 8

2.4 Web Service standards .. 9

2.4.1 XML: ... 9

2.4.2 XML schema: .. 9

2.4.3 Web Service Description Language (WSDL): .. 13

2.4.4 Simple Object Access Protocol (SOAP): .. 14

2.4.5 Universal Description, Discovery and Integration (UDDI): ... 15

VIII

2.5 Web Services robustness quality attribute .. 15

2.6 Testing ... 15

2.7 Testing techniques: .. 16

2.8 Assessing Web Services quality attribute ... 18

2.9 Literature Review for Web services Testing ... 19

2.9.1 A Technique for Deploying Robust Web Services ... 19

2.9.2 An Approach for WSDL-Based Automated Robustness Testing of Web Services 20

2.9.3 Automatic Web Service robustness testing from WSDL descriptions 20

2.10 Summary ... 21

3 Chapter Three: A WSDL-BASED APPROACH TO ASSESS THE
ROBUSTNESS OF WEB SERVICES .. 23

3.1 Introduction ... 24

3.2 Analyzing WSDL .. 24

3.3 Analyzing Text associated with Input Messages .. 25

3.4 Building Keywords dictionary .. 26

3.5 A Model for Robustness Testing of Web Services ... 27

3.6 Generating Test Cases for text associated with input messages based on regular
expression ... 31

3.7 Generating Test Cases for text associated with input messages based on pre-
defined values domain .. 34

3.8 Generating Test Cases for non-descriptive text associated with input messages 37

3.9 The basic algorithm ... 39

3.10 Summary ... 40

4 Chapter Four: IMPLEMENTATION ISSUES, EVALUATION AND
APPLICATION AREAS .. 41

4.1 Introduction ... 42

4.2 Implementation issues ... 42

4.3 Application areas: .. 42

4.4 Evaluation ... 42

4.5 Assessing the robustness quality attribute of Web services 45

4.6 Comparison with similar works .. 46

IX

5 Chapter Five: CONCLUSION AND FUTURE WORKS 48

5.1 Conclusion: perspective and future works .. 49

REFERENCES .. 50

 53 ... ملخص

X

LIST OF TABLES
Table 2-1 Definition of constraining facets .. 10
Table 2-2 Summary of constraining facets for XML built-in data types .. 11
Table 2-3 Test data generation methods ... 18
Table 3-1The extracted keywords ... 26
Table 3-2 Invalid test data generation using perturbed email regular exp. 34
Table 3-3 Generating test data using robustness testing ... 36
Table 4-1 Test data for MailBox Validator WSDL file .. 45

LIST OF ABBREVIATIONS
Abbreviation Full Name

ASP Active Server Pages

DTD Document Type Definition

HTTP Hypertext Transfer Protocol

IPA Interface Propagation Analysis

J2EE Java 2 Platform, Enterprise Edition

RPC Remote Procedural Call

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration

W3C World Wide Web Consortium

WSDL Web Service Description Language

XML Extensible Markup Language

XSD XML Schema Definition

XI

12BLIST OF FIGURES
Figure 2-1 illustrates Web Services roles together with the three operations. 9
Figure 5-1 WSDL analysis workflow ... 25
Figure 5-2 The model .. 30
Figure 5-3 Example of input messages with its descriptive text ... 33
Figure 5-4 Weather Web service PortType ... 35
Figure 5-5 Example of input messages with its descriptive text ... 37
Figure 5-6 The algorithm .. 40
Figure 6-1 MailBox Validator WSDL file .. 44

XII

ABSTRACT

 Web Services are important for integrating distributed heterogeneous applications. One

of the problems which is facing Web Services is the difficulty for a Service requester to

trust Services provided by a Web Service provider.

One ideal way to increase trust between Service requesters and providers is testing. Testing

can provide away to automatically assess quality attribute of a Web Service such as

robustness based on its service description only, which in-turn will give Service requesters

a mechanism to measure the desired quality for a specific Web Service.

This thesis proposes an approach that can be used to assess the robustness quality attribute

of Web Services.

The approach is based on analysing Web Services Description Language (WSDL)

documents of Web Services then build test cases based on input messages semantics and

the input parameters data types to assess the robustness quality attribute of Web Services.

This approach will give a better test data since that it can give a real representation for a

specific problem domain and can effectively test Web Services quality attributes.

1 CHAPTER ONE: INTRODUCTION

2

1.1 Introduction

Recent years have seen an emergence of Service-oriented Architecture (SOA), that

enable access to data that was difficult to reach, those Services are commonly referred to as

Web Services, as they are available and provided over the Web. Web Services are designed

as a way to automate application-to-application interactions; these applications are

exchanging data via messages (De Virgilio, 2010) to accomplish various operations over a

network.

Web Services are relatively new technology and have an increasing use within and across

enterprises since they provide a framework for facilitating application-to-application

interactions. Web Services became the most promising solution for integrating software

applications over heterogeneous networks since they exchang information in a simple,

standardized manner, and regardless of the platform (for example: Microsoft .NET, Sun

J2EE, run on Window or Linux).

However, with the huge advantages of Web Services come a few challenges which restrict

somehow the increase adoption of Web Services by companies and individuals within their

businesses and limit the growing popularity of Web Services.

One of these challenges is the assessment of Web Service quality attribute such as

robustness, Web Services can be offered publically by unknown providers through internet,

and Service requesters cannot trust others software especially when they have no

reputation, and there’s no way to access the source code of their Web Services because

Service providers only provide the Web Service Description Language or (WSDL) of their

Web Services for Service requesters. For these reasons the trustworthiness problem will

arise between the Service requesters and providers.

1.2 Web Services advantages and challenges

Web Services have many benefits which made them becoming a major part in the

development of Service oriented application (Sun, Li, Zhang, & Yan, 2009). These benefits

3

put Web Services in front of the line and the best choice when talking about application-to-

application interaction.

 Some of the prominent features of Web Services are (Hanna & Alawneh, 2010) and

(Cavanaugh, 2006):

• Interoperability: since Web Services are based on open standard such as XML,

this will increase and facilitate the commutations and interactions between

applications regardless of their platforms or programming language.

• Usability: any client can use the same Service as long as it provide the

operations he need without the need of creating a custom Service for each

requirement.

• Reusability: parts of the Service can be simply reused (Albreshne, 2009), this

will have the effect of reducing time and cost required to design new Web

Services. (Bozkurt, Harman, & Hassoun, 2010)

• Application and data integration: any Web Service can easily communicate with

any other Service in a heterogeneous environment without the need for special

software or to know the format used to store data or what platform and

programming languages used to develop a particular Web Service.

However, with all the advantages of Web Services, come some challenges including

but not limited to the following (Hanna S. , 2008):

• The trustworthiness problem: as mentioned before the Service requester only

need the WSDL description file to access the desired Web Service. This looks as

an advantage but this result to cause a problem, which is the trustworthiness

problem (Dragoni, 2009).

The trustworthiness problem can be addressed by the fact that Service requester

has no mechanism to trust and ensure others Web Services since he has no

means to access the source code, and current methods and testing techniques are

inappropriate to work with this type of technologies.

4

• The selection problem: among the sea of Services that may provide the same

functionalities, Service requesters have no way to find the right Service, there is

no norm a Service requester can follow to choose the best Web Service among

number of Services that provide the same functionalities (Makhlughian,

Hashemi, Rastegari, & Pejman, 2012.) In addition, WSDL does not describe the

non-functional quality attributes such as robustness, security, and performance.

• Vulnerability to invalid inputs by malicious Service requesters: since Web

Services are publically available over the internet, this situation presents several

vulnerabilities, threats, and security issues, such as unauthorized access to

sensitive data, parameter manipulation (malicious input) (Rani, Rao, & Devi,

2010).

1.3 Research Problem

The current Web Services architectures are facing some problems that are limiting their use

and growth such as robustness and security. WSDL description only provide information

about the functionalities of Web Services (the operations or the functions that a Web

Service provides and how to bind to this Service), WSDL does not describe the non-

functional aspects related to the quality of Service, and previous researches have shown that

Web services are published to the public over the internet although they suffer from

robustness issues (Laranjeiro, Vieira, & Madeira, 2014).So how can we test the non-

functional requirement such as robustness of Web Services using WSDL description only?

Additionally, when building Web Services using different programming languages, the

WSDL description will be different even for the same Web Services. For example the

WSDL description for a Web Service implemented using Java will be different if we

implemented it using ASP.net, so how can we distinguish and realize the WSDL

specification generated by different programming languages and then generate test data

accordingly?

And finally, when generating test data using the existing techniques, the generated test data

may be correctly formed, but in most cases it doesn’t take into account the semantics that

5

make test data more realistic, so how can we generate test data in such a way that satisfies

both structural and semantics validity?.

The major question for this thesis is that: Can we automatically generate test data to assess

the robustness quality attribute of a Web Service based on its contract regardless of what

programming language was used to develop that Service?

1.4 Motivation

The work introduced in this thesis is stimulated by the following motivations:

• Tackling the above problems will allow service requester reaching high quality

in the generated testing data.

• Providing an automatic way to assess the robustness quality attribute of Web

services based on any WSDL.

• Allowing the service requester to evaluate how good a web service is.

• Providing a mechanism to select the most appropriate web service that best meet

the requester needs among several web services that do the same task.

• Increasing the level of trust between service providers and service requesters

through using testing.

1.5 Research Objectives

This thesis aims to generate test data in order to assess the robustness quality attribute of

Web Services based on its interface or contract only and regardless of what platform was

used to develop that Service.

1.6 Research Contributions

1. Developing an approach to assess the robustness quality attributes of a Web Service

based on the semantics that can be extracted from WSDLs input messages, and the

specifications of the input parameters data types inside the WSDL document of the

Web Service under test.

6

2. Generating test data in more realistic way to assess the robustness quality of Web

Services, based on any WSDL.

1.7 General structural Design

The approach can extract the WSDL document which attached with the Web Service itself,

and then extract the text associated with each input message and the input parameters Data

type. The approach will be able to generate test data automatically regardless of what

platform a specific WSDL description belongs to, the generated test data will be saved in a

XML document to be used in the testing process later.

1.8 Thesis Outline

The rest of this thesis consists of 5 chapters, organized as follows: Chapter two give the

definitions for the main concepts related to this thesis and discusses the main components

of Web Service and explains them in detail (such as XML-Schema ,WSDL ,UDDI ,SOAP).

Chapter 3 give a detailed discussion on testing, testing techniques and Web services testing.

Chapter 4 reviews general approaches used to generate test data in order to test Web

services and assess the robustness quality attribute of Web Services. Chapter 5 present in

details the proposed approach to assess the robustness quality attribute of Web Services.

Chapter 6 summarizes the main achievements of this thesis, presents the general

conclusions and suggests further research directions.

1.9 Summary

In this chapter, we have introduced a brief introduction about Web Services. We also

discussed the importance of the Web Service for integrating distributed heterogeneous

applications and describing briefly Web Services advantages and challenges, and finally

introduced the motivations and objectives of this research and the contributions of the this

thesis.

2 CHAPTER TWO: BACKGROUND

8

2.1 Introduction

This chapter will give a full explanation of all Web Service components and also a detailed

review of all concepts that are related to this thesis such as XML, XML Schema, SOAP and

WSDL.

2.2 Web Services

Many studies gave different definitions of Web Services, There is no universally accepted

definition of Web Services, as it has been under debate for quite some Time, For example

(Bartolini, Bertolino, Marchetti, & Polini, 2009) defined the Web Service as an application

that is published and accessed its functionality through Web.

Additionally (Hanna & Abu Ali, 2011) define Web Services as a new paradigm for

building distributed software applications, which allow applications to interact,

communicate, and exchange data regardless of what platform were used to implement it

and also regardless of what programming language in which they were written.

Web Services are based on open standards such as eXtensible Markup Language (XML),

Simple Object Access Protocol (SOAP) and Web Service Description Language (WSDL).

It uses XML format which allow Services to communicate no matter what platform is used,

and provide an effective way to reuse functionality, which in-turn reduces development

time and cost (Casado, Tuya, & Younas, 2012).

2.3 The Web Services Model

There are three major roles within the Web Service architecture: Service provider, Service

registry and Service requester. The interactions between these roles include three operations

publish, find and bind operations as shown in figure 2.1 .

9

2.4 Web Service standards

This section will present a detailed explanation of all Web Services standards that are

related to this thesis, XML, XML Schema, WSDL, SOAP, and UUDI.

2.4.1 XML:

XML is a document standard designed for storing, carrying, and exchanging information

among incompatible applications (heterogeneous systems) because most of computer

systems are originally programmed to understand or interpret such standards (Lee &

Hwang, 2009).

Since the purpose of Web Services is for exchanging data between heterogeneous systems,

all Web Services components are based on XML (i.e. WSDL, SOAP, UDDI), as a

consequence for this, Web Services will have the ability to communicate with each other

without the need for any special software. So XML is the backbone of Web Services.

2.4.2 XML schema:

XML schema describe the structure of an XML document , it’s an alternative to

Document Type Definition (DTD) but richer, more expressive and much more powerful.

According to (W3C, 2008), XML-Schema data type can be categorized into two types:

1. Simple data types:

Figure 2-1 illustrates Web Services roles together with the three operations.

10

Simple data types are including (Hanna S. , 2008) :

a. Built-in primitive data type (string, decimal, date, Boolean, time …).

b. Derived from built-in primitive data type: Derived from built-in primitive

data types are actually built-in primitive data types with the addition of some

default constraints to restrict the value space for a specific data type (De

Melo & Silveira, 2011).

c. User-derived data types: User-derived data types are built-in primitive

data types or derived from built-in primitive data types, with the addition of

constraining facets were added to restrict the value space for a specific data

type.

Table 2.1 gives a definition for all constraining facets and Table 2.2 shows the allowed

constraining facets for each XML built-in data type.

Table 2-1 Definition of constraining facets

11

Table 2-2 Summary of constraining facets for XML built-in data types

data type Constraining facets
length minL maxL wSp Enum MaxI MaxE MinI MinE pattern Tdigits Fdigit

String • • • • • •
ENTITIES • • • • •
ENTITY • • • • • •
ID • • • • • •
IDREF • • • • • •
IDREFS • • • • •
Language • • • • • •
Name • • • • • •
NCName • • • • • •
NMTOKEN • • • • • •
NMTOKENS • • • • •
NormalizedString • • • • • •
Notation • • • • • •
Token • • • • • •
AnyURI • • • • • •
QName • • • • • •
Base64Binary • • • • • •
HexBinary • • • • • •
Byte • • • • • • • • •
Decimal • • • • • • • • •
Int • • • • • • • • •
Integer • • • • • • • • •
Long • • • • • • • • •
NegativeInteger • • • • • • • • •
nonNegativeInteger • • • • • • • • •
nonPositiveInteger • • • • • • • • •
PositiveInteger • • • • • • • • •

12

Short • • • • • • • • •
nsignedLong • • • • • • • • •
unsignedInt • • • • • • • • •
unsignedShort • • • • • • • • •
unsignedByte • • • • • • • • •
Double • • • • • • • • •
Float • • • • • • • • •
Boolean • •
Date • • • • • • • • •
DateTime • • • • • • • • •
Duration • • • • • • • • •
gDay • • • • • • • • •
gMonth • • • • • • • • •
gMonthDay • • • • • • • • •
gYear • • • • • • • • •
gYearMonth • • • • • • • • •
Time • • • • • • • • •

13

d. List data types: allows the creation of a type that has a value set that consists

of a finite length list of acceptable values of the same type, rather than just one.

e. Union data types: joining two simple types or more together to create a new

simple type.

2. Complex Data types: consist of one or more elements and attributes of data types

(Hanna & Alawneh, 2010) and (De Melo & Silveira, 2011). Just like simple data

types complex data types can have restrictions also using sequence, choice, and all.

2.4.3 Web Service Description Language (WSDL):

WSDL is a standard document written in XML, which provide a way for describing Web

Services. It provides a description that specifies the location of the Services and their

capabilities (Noikajana & Suwannasart, 2009).

A WSDL file contains all of the information necessary for a client to invoke the operations

of a Web Service including:

• Interface information: what a Web Service can do.

• The input and output messages used by an operation.

• Binding information: describing the transporting protocols used to

communicate, and messages format allowed for each operation.

• Address information: where to locate the requested Web Service.

• Data types information for all requests and responses messages.

A WSDL document contains the following elements (W3C, 2010):

1. Definitions element:

The definitions element is the root element, it defines the Web Service

and act like a container of all other WSDL elements.

2. Types element:

14

The types element describes all the data types of the parameters of the

input, output and exceptions messages.

3. Message element:

This element is used to describe the structure of all messages types;

input, output and exceptions messages, exchanged between the Service

requester and Service provider including input parameters and their data

types.

4. Porttype element:

The porttype element is a container of all the operations provided by a

Web Service and what messages are involved within these operations.

5. Binding elements:

This element describes how the operations provided by a Web Service

transmitted over the network, and it also defines the message type RPC

or document.

6. Service element:

This element tells the client where a Web Service can be accessed using

which port.

2.4.4 Simple Object Access Protocol (SOAP):

Is an XML-based standard messaging protocol for exchanging structured information using

HTTP as main means transportation in a decentralized, distributed environments. SOAP

defines the three types of messages supported by WSDL (input, output, and exceptions

messages) in XML by which the messages are guaranteed to be compatible and understood

by any application (Cavanaugh, 2006).

SOAP message has an envelope element which is the root element, and it has two child

elements; an optional header and a mandatory body.

15

2.4.5 Universal Description, Discovery and Integration (UDDI):

Universal Description, Discovery and Integration or UDDI for abbreviation, is a distributed

global registry where Service providers can register their Web Services using WSDL, so

that clients can find them (Kumar & Varalakshmi, 2012).

2.5 Web Services robustness quality attribute

The software quality attribute that is of interest to this thesis is robustness which is a sub

attribute of reliability (Hanna S. , 2008).

Reliability is defined as:

 “The quality of a system to provide consistent results, effectively handle variation in

inputs and environmental conditions, and recovery gracefully from error conditions”

(O’Brien, Merson, & & Bass, 2005).

The previous definition of reliability shows that reliability is mainly related to robustness

and fault-tolerance.

It’s worth mentioning here that to achieve robustness, some testing technique such as

robustness testing are required (testing techniques will be discussed in depth next section).

Robustness is defined as:

“The degree to which a system or component can function correctly in the presence of

invalid input or stressful environmental conditions” (IEEE, 1990).

 (O’Brien, Merson, & & Bass, 2005) and (Hanna S. , 2008) mentioned that the level of trust

between Service providers and Service requesters, the ability to distinguishing and ranking

Services with similar functionalities can be increased by assessing the robustness quality

attribute of Web Services.

2.6 Testing

For any software, it is essential to evaluate its functionalities, detect any possible errors,

and assess it quality before using it.

16

Testing is one way that enables us to know if a program reacts the way we assume and

produce the expected output for a given set of inputs.

Testing can be defined as:

“Software testing is a quality assurance process that is part of the verification and

validation processes, and involves executing the system under test with test data for the

purpose of detecting faults and assessing the quality attributes of that system or

software component” (Hanna S. , 2008).

Testing can be functional or non-functional testing, where functional testing verify and

validate a particular functionality of the code, and non-functional testing assess the non-

functional requirements of a software such as robustness, performance, and security.

As our approach of testing Web Services aims to assess the robustness quality attribute of

Web services, the type of testing used in this thesis is classified under non-functional

testing.

2.7 Testing techniques:

As mentioned before, software testing is an important way for assessing the software in

order to determine its quality.

Many testing techniques have been proposed and categorized into various types each

following specific criteria, such as the availability of source code, the intent of the test, the

level of testing, and the quality attribute of system behavior (Hanna S. , 2008).

The testing techniques that most related to this research are:

• Boundary value testing: is a black-box testing techniques because accessing the

source code is not permitted, and the test data is generated in the absence of the

source code. On the contrary, when the presence of source code is mandatory to

perform testing, this type of testing is considered to be a white-box texting

(Khan, 2011) and (Khan, 2012) .

17

Boundary value testing is used to identify errors that may occur at the

boundaries of an input domain where test cases are selected at the edges of a

specific test class.

• Equivalence class partitioning: is also a black-box testing techniques, and

mainly used to reduce the number of the generated test cases by dividing the

input domain data into a finite set of different equivalence data classes (Huang

& Peleska, 2013).

• Interface Propagation Analysis (IPA): IPA is a fault injection based technique,

used to assess robustness, reliability, and Security quality attributes. IPA injects

corrupted or perturbed information into the data, and then IPA analyze the

behavior of the system by observing how that corrupted information propagates

through the system (Jorgensen, 2013).

• Boundary Value Based Robustness Testing: is an extension to boundary value

testing, generating test cases are based on choosing values around the

boundaries of the input parameter i.e. a value above the maximum and below

the minimum value of a specific input parameter (ANUPRIYA, SHARMA,

SEEMA, & DEEPTI, 2010).

• Syntax testing: is a black box testing technique, syntax testing helps the tester

to be sure that input values are being checked correctly using some formal

description methods such as regular expression (Moreira, Antunes, & Ramal,

2010).

.

18

Table 2.3. shows how test data are generated using the pre-mentioned testing techniques.

Table 2-3 Test data generation methods

Testing technique description

IPA Injects corrupted or perturbed information into the

data during the execution of a set of valid input

values.

Boundary Value Based

Robustness testing

choosing values around the boundaries of the input

parameter i.e. a value above the maximum and

below the minimum value of a specific input

parameter

Syntax testing Breach the rules of formally-defined syntax of the

input parameters

Equivalence Partitioning Partitioning the input domain into sets or classes of

input data then generate test data according to these

classes.

2.8 Assessing Web Services quality attribute

Like all software, Web Services need to be tested; they need to be very robust and reliable.

Testing provide a way to test and assess the quality attributes of Web Services.

However, testing Web Services is more difficult than testing traditional software. Web

Services testing faces many challenges and difficulties, these challenges and difficulties

came from:

1. The complex nature of Web Services, due to the fact that Web Services are

distributed applications based on different protocols such as UDDI and SOAP,

and depending on limited specifications provided by WSDL (Bozkurt, Harman,

& Hassoun, 2010) and (De Melo & Silveira, 2011).

19

2. The absence of source code, enforcing test to be based on the published

descriptions by which the test process could be very costly and error-prone (De

Melo & Silveira, 2011).

3. Web Services do not display a user interface that can be tested.

4. WSDL does not describe the non-functional aspects related to the quality of

Service.

To overcome these challenges, testing is used by adopting existing traditional testing

techniques and employs them to test Web Services (De Melo & Silveira, 2011).

2.9 Literature Review for Web services Testing

2.9.1 A Technique for Deploying Robust Web Services

(Laranjeiro, Vieira, & Madeira, 2014) Presented an approach to automatically detect

robustness problems and fix these issues.

The proposed approach consists of many phases which can be summarized in the following

steps:

 Phase 1: in this phase the WSDL file is first examined in order to extract information

related to the Web Service under test, these information are all the operations provided by

the Web Service, input messages parameters, and their data types, then determining the

valid domains and any constraining facets for each input parameter through searching the

associated XSD and using an extension to XML schema which express the valid domains

for each input parameter and the meaning for domain dependencies between parameters.

Phase 2: in this phase a synthetic workload is generated in order to test each operation

where a set of valid inputs are generated randomly for every input parameter for each

operation.

Phase 3: in this phase the proposed approach identify robustness problems for the Web

service under test by using a fault injection process during the execution of the workload

generated in the previous phase. The faults generated using a mutation rules based on input

parameters data types.

20

Phase 4: this phase consists of fixing any robustness problems revealed in phase 3 through

the use of proposed protective scheme.

2.9.2 An Approach for WSDL-Based Automated Robustness Testing of
Web Services

(Hanna & Munro, 2009) Proposed an approach to generate test data by analyzing WSDL

document and extracting useful information that can be used to generate test data.

The test data generation strategy is based on the input parameters data types and their

constrains. Input parameters data types can be classified in to primitive simple data types

(string, numeric, data-time, and Boolean), user-derived data types, and complex data type.

(Hanna & Munro, 2009) Technique of generating test data can be summarized as follows:

1. Generating test data for primitive simple data types: valid and invalid test data are

generated by changing the data type of the input parameter, inserting null or empty

parameter, or using the boundaries limits of values by following a pre-defined test case

generation rules. For example: for the input parameter of type numeric, date-time, and

Boolean, invalid test cases are generated by replacing or changing the data type of the

input parameter to string.

2. Generating test data for user-derived data types: test cases generated for user-derived

data types depends on the base type of the input parameter data type and the

constraining facets. . For example: for the input parameter of type decimal or float,

valid and invalid test cases are generated by using numeric boundaries constraining

facets such as minInclusive, minExclusive, maxInclusive, and maxExclusive.

3. Generating test data for complex data types: test cases generated for complex data

types by decomposing complex data types in to simple and user-derived data types then

generating test data according to what mentioned in step 1 and 2. The resulting test

cases are computed.

2.9.3 Automatic Web Service robustness testing from WSDL descriptions

21

(Salva & Rabhi, 2009) Introduced an approach to test Web Services robustness using the

information provided by WSDL only, it based on analyzing the Web Service observability

to determining what type of hazards (unspecified events) that can be used for testing, and

which of them are blocked by the SOAP processor.

The presented approach assumed that a specific Web Service can be considered robust if

and only if all its operations are robust too, the robustness of an operation can be

determined according to its behavior when invoking it with hazards.

(Salva & Rabhi, 2009) Classified the type of hazards that can be used for testing, for

example replacing, adding, deleting, or inverting the parameter type are classified as

blocked by SAOP hazards and cannot be used for testing, in the other hand, unusual values

(such as special characters) passes the SAOP processor, therefore, it can be used for testing.

 The proposed approach can be summarized as follows:

1. Generating test cases to check if all operations specified in the WSDL

description file are exists by and operates as expected, making sure that each

operation can be called using a value representing the parameter type

expressed in the WSDL file, and returning the expected response. Following

this step the authors ensure the correctness of the functionality for all

operations.

2. With the presence of hazard (unusual values), test cases are generated to

analyze the Web Service behavior to see its reaction and to check if each

operation does not crash or hang by calling it with unusual values and to make

sure it response with a proper SOAP fault.

2.10 Summary

In this chapter, we gave a definition of Web Service and introduced a background about

Web Services components and its roles; we also discussed XML and XML-Schema. We

also gave a detailed discussion for the Web services standards, and a focus discussion on

22

WSDL which is the most important standard to the Web Service testing approach that is

developed in this thesis.

Also gave a detailed discussion on quality attributes and software testing techniques. A

definition of reliability and their related sub attribute was given in this chapter.

And finally we discussed some recent studies and researches aiming to introduce different

approaches and techniques for testing Web Services.

3 CHAPTER THREE: A WSDL-BASED APPROACH
TO ASSESS THE ROBUSTNESS OF WEB
SERVICES

24

3.1 Introduction

This chapter describes our approach of assessing the robustness quality attribute of Web

services. The approach depends on analyzing WSDLs documents to find the name of the

different input messages and after that generating test data based on analyzing the text

associated with each input message. Our approach will consider both the syntax and

semantics in the process of generating test data.

3.2 Analyzing WSDL

As mentioned before, WSDL consists of several elements; the elements that are of interest

to our approach are PORTTYPE, and TYPES elements

The PORTTYPE element contains information related to the operations provided by a Web

Service and what input messages are involved within these operations. Each input message

has an associated text which determine and tells what specific inputs is required for this

input message. In the other hand, The TYPES element describes the input parameters data

types.

Our approach starts by analyzing the WSDL file to find specific useful information; it first

extracts every input message name which can be found in the PORTTYPE element and

analyzes the text associated with it, looking for descriptive text that can be used to

determine the different types of the input messages and use it in the process of generating

valid and invalid test cases. In addition, our approach will extract the data types for the

input parameters and generate valid and invalid test data accordingly with the use of their

associated constraining facets.

The proposed approach is mainly focuses on using the semantics of the input messages to

generate test data and then uses these test data to assess the robustness of a specific Web

Service by analyzing its behavior in the presence of invalid inputs.

Figure (5.1) shows how WSDL analyzing process works.

25

3.3 Analyzing Text associated with Input Messages

Each input message has a descriptive text; our approach will read that text in order to locate

keywords, the extracted keywords will be used to generate valid and invalid test data.

A descriptive text can be classified into three categories:

1. Keywords that can be mapped to a pre-defined regular expression; in this case

the descriptive text associated with the input message contains a keyword, this

keyword is previously mapped to a valid regular expression which express the

meaning (semantic) of this keyword.

2. Keywords with a pre-defined value range; in some cases the keyword semantic

cannot be expressed using a regular expression such as the keywords year and

weather. In such cases our approach will depend on a pre-defined value range

which represents the accepted values for such keywords. This values range will

be used to generate valid and invalid test data based on selecting values within

and outside the range of the value range.

Load any WSDL
Document

Parse into an XML
tree

Search for <Input>

Read input messages
descriptive text

 Locate XSD file

Extract Keywords

Extract input param
DT with their CF

Search for
<portType>

Search for
<Operaion>

Figure 3-1 WSDL analysis workflow

26

3. No keyword can be found; in this case the descriptive text associated with the

input message has no word that can be expressed using regular expressions and

a value range cannot be defined. To handle this situation our approach will

depend only on the input parameter data types, constraining facets, and testing

techniques to generate test data.

3.4 Building Keywords dictionary

To build a keyword dictionary, manual examination need to be done on every available

WSDL file belonging to a specific Web services domain.

As an example, we perform the examination process on a real sample for more than 250

WSDLs. After an extensive study for the sample we successfully found that WSDL can

provide us with very helpful keywords that can be used to generate valid and invalid test

data.

Our survey successfully found keywords that can be assigned to a regular expression or

value ranges which in-turn used to generate valid and invalid test data.

We also were able to build regular expressions and define a value range for the extracted

keywords. Table 5.1 shows the extracted keywords after analyzing 250 WSDLs which can

be used to generate test data by assigning them to regular expressions or range of values.

Table 3-1The extracted keywords

Keywords
 Bank mobile numbers
Movie Time
Cities (ISBN)

Country Blood Group
NameState URL

Vehicle Username
Quote Password

DollarValue Email Address
Temperature HTML

Humedad Currency
Version Timestamp
Count User ID
Size IBAN

27

Continent Date and Time
Language SSN
Taxrate ip addresses

Year Credit card / Debit card
SSN Mastercard

Number Discover Card
Exchange rate Phone Numbers

Bandwidth international phone number
XML Time

Birthday Email
Price Credit Card

Payment Time
Balance Month

Studentbirthdate Phone Numbers
Employbirthdate Date

ZipCode/Zip Timezone
Currency Bank Swift Number/BSN
Decimals IP Address
PO Box Website

The extracted keywords table 5.1 is used as a dictionary, this dictionary can be used to

know if any text associated with input messages has a keyword or not, then Using the steps

in the developed algorithm presented in section 5.7 we can generate valid and invalid test

data by depending on the semantics extracted from the text associated with input messages

and input parameters data types with their constraining facets. It’s worth mentioning here

that the size of the dictionary can be infinite, so for each specific Web services domain a

different dictionary will be constructed in order to reduce the generated dictionary size.

3.5 A Model for Robustness Testing of Web Services

This section will give a detailed explanation for the model of our approach for robustness

assessment of Web Services and how it works (see Figure 5.2).

The goal of our approach is to generate valid and invalid test data to assess the robustness

quality of Web Services from the client side, and then analyzing the behavior of a Web

Service under test in presence of invalid inputs.

 Figure 5.2 represents the model of our approach for generating test data. First, the WSDL

file is analyzed to extract useful information which can be used in the process of generating

test data. The specific information inside WSDL that our approach will look for is: input

http://regexlib.com/REDetails.aspx?regexp_id=2545

28

messages name and the text associated with each input message, and input parameter data

types with their constraining facets.

The first information can be located in the PORTTYPE element of WSDL. As mentioned

before, the PORTTYPE element is a container of all the operations provided by a Web

Service, and it contains the input, output, and exception messages involved within these

operations.

What is important here is the input messages, our approach will extract the input message

name together with the text associated with each input message. Text associated with each

input message is used to determine the semantic (type) of what expected as inputs for this

input message.

The second information can be located in the TYPES element of WSDL, which holds a

description of the input parameters data types.

In order to generate test data, our approach will analyze the extracted text associated with

each input message and classifying it into descriptive and non descriptive text.

A descriptive text contains keywords such as email, phone, SSN … etc, each keyword will

be mapped to an appropriate pre-defined regular expression or pre-defined value range,

then the regular expression or value range will be used to generate valid and invalid test

data. Test data generation method based on regular expressions and value ranges will be

discussed in depth later.

For non descriptive text, no action will be taken since our method depends mainly on

finding keywords and generating test data for such kind of text is impossible. To handle

this situation our approach will depend on input parameter data types and their constraining

facets to generate test data

For each input parameter a test data is generated based on its data type expressed in the

TYPES element of WSDL and the defined constraining facets for each data type, the test

data generated using this method will follow pre-defined rules based on testing techniques.

These rules and the test generation method based on input parameter data types will be also

discussed in depth later.

29

Finally the generated test data will be exported into XML document. This XML document

will be used to test the robustness of Web Services. The robustness quality will be

measured according to the behavior of a Web Service in the presence of invalid inputs.

30

 Figure 3-2 The model

Extractor

Analyzer

Descriptive?

categorizer

Extract

Yes

No

Has
regex

Yes No

Load any WSDL Document

Extract Text associated with each
input Msg

Extract Input parameters data types
with their CF

Generate test data
based on Reg. Exp.

Generate test data
based value range

Generate test data
based on generation

rules

Save to XML file

31

Our model consists of many components, these components are explained next in more

details:

WSDL document: is the description file of the Web Service under test.

 Extractor: responsible for performing the WSDL analysis process presented in figure 5.1.

This component extract text associated with each input message, and each input parameter

data type with their constraining facets.

Analyzer: extract words from the extracted text, and then examine these words to make a

decision if those words are keywords or not (see section 5.3).

 Categorizer: determine the type of the extracted keywords in order to map those words to

regular expression or to a pre-defined value range.

Generate test data based on regular expression: responsible for generating valid and

invalid test data based on pre-defined regular expression (see section 5.4).

Generate test data based on pre-defined value range: responsible for generating valid

and invalid test data based on pre-defined value range (see section 5.5).

Generate test data based on generation rules: responsible for generating valid and

invalid test data based on pre-defined rules which generate test data according to the input

parameter data type and its constraining facets (see section 5.6).

Test data: the generated test data using the previous methods are saved in an XML file,

this file is used to test Web Service under test by sending the generated test data in a SOAP

messages.

3.6 Generating Test Cases for text associated with input messages based
on regular expression

As mentioned before, text associated with input messages can be meaningful, we can

generate test data based on it.

Our approach starts by analyzing WSDL file until it find input messages, each input

message holds a text, which describe the expected types of the inputs for a specific input

32

message. For each input message, the text associated with it will be analyzed in order to

find keywords (email, SSN, phone … etc.), the extracted keywords may help in

determining the type of inputs expected for this input message.

When a keyword is found our approach will perform a mapping between the keyword and a

pre-defined regular expression which express the meaning of this keyword.

Figure 5.3. illustrates an example of the PORTTYPE element of a WSDL file for a Web

Service provide a registrations Service, as shown, the PORTTYPE element consists of

portType name (“Registrations”), an operation (“RegistrationInfo”), and an input message.

According to our approach, a text can be considered as a keyword if it already defined in

the dictionary which we build after a survey for more than 250 WSDL files (see table 6.1).

Each input message has a descriptive text; for example

<wsdl:input message="tns:Email"/>, the word Email is a keyword since it can be

expressed using a regular expression.

After extracting the associated text, the text is analyzed to find keyword. Our approach then

relates each keyword which determines the input message expected input to a regular

expression that defines the meaning of this keyword.

Our approach uses the regular expression to generate valid and invalid test data. The valid

test data are simply generated by applying the regular expression definition for each

keyword. In the other hand, to generate invalid test data a perturbation strategy is used by

applying a modification rules on the regular expression of valid inputs itself.

Our perturbation strategy performs modification operations to modify the regular

expression:

1. Disordering the sets in a regular expression.

2. Changing the appearance time of selected elements from a set in a regular expression.

3. Deleting sets from a regular expression.

4. Replacing mandatory sets with an optional sets in regular expression and vice versa.

33

5. Adding invalid characters such as “{“ string to the a regular expression.

6. Replacing the original regular expression with another.

By applying the previous perturbation rules on a regular expression we can get 6 different

invalid test data.

The following example illustrate our approach for generating test cases for the text

associated with input messages based on regular expression:

Suppose we have WSDL file for a specific Web Service that provide a registration Service

and we want to assess if this Web Services is robust or not. Figure 5.3 shows the

PORTTYPE element of the WSDL file for this Web Service.

<wsdl:portType name="Registration">

<wsdl:operation name="RegistrationInfo">

<wsdl:input message="tns:Email"/>

…

</wsdl:operation>

…

</wsdl:portType>

Figure 3-3 Example of input messages with its descriptive text

The part of the PORTTYPE element which is of special importance to our approach is the

input message name and its associated text. Generating valid and invalid test cases for this

example can be summarized in the following steps:

1. Locating input messages inside WSDL and Extracting the descriptive text for

each input message. i.e. <wsdl:input message="tns:Email"/>

2. Analyzing the descriptive text i.e “Email”, in order to determine the input

message type.

3. Locating keywords; the associated text in our example has only one word

(Email), Email is a keyword since it has a pre-defined in the dictionary and it

has a regular expression.

34

4. Each keyword is related to a proper regular expression which define the valid

inputs for the input message. A valid regular expression for the keyword Email

can be: [w- \ .]+@ ([\w-] + \.) + [\w-] {2,4}, so our approach will relate the

keyword Email to this regular expression.

5. Using the previous Email regular expression, our approach will generate valid

test data by simply apply the rules defined for that regular expression. For

example:

TestEmail@testcomp.com; is a valid test data generated from using email

regular expression.

6. For the generation of invalid test data, we will use the pre-mentioned

modification rules to modify the email regular expression. For example table 5.1

shows how we can get the invalid test data after applying the perturbation rules

on the email regular expression:

Table 3-2 Invalid test data generation using perturbed email regular exp.

Rule No. Invalid email regular exp. Invalid test data

1 @[w- \ .]+([\w-] + \.)+[\w-] {2,4} @TestEmailtestcomp.com

2 [w-\.]+@([\w-] + \.) * [\w-] {2,4} TestEmail@.com

3 [w-\.]+([\w-] + \.) +[\w-] {2,4} TestEmailtestcomp.com

4 [w-\.]+@?([\w-] + \.) +[\w-] {2,4} TestEmailtestcomp.com

5 [w-\.](\s)+@([\w-]+\.)+[\w-]{2,4} TestEmail{@testcomp.com

6 ^(19|20)\d\d[- /.](0[1-9]|1[012])[-

/.](0[1-9]|[12][0-9]|3[01])$

2011-0812-072531

3.7 Generating Test Cases for text associated with input messages based
on pre-defined values domain

In section 5.3. we have mentioned that a descriptive text for an input message can be

classified into three categories; keywords that can be assigned to a regular expression,

keyword that can be assigned to a value range, and non descriptive text.

mailto:TestEmail@testcomp.com
mailto:TestEmail@testcompany.com
mailto:TestEmail@testcompany.com
mailto:TestEmail@testcompany.com
mailto:TestEmail@testcompany.com
mailto:TestEmail%7b@testcomp.com

35

In this section we are going to give a detailed discussion for the second category “keyword

that can be assigned to a value range”. Our approach will follow the same steps introduced

in section 5.4. but instead of assigning keywords to a regular expression it will assign them

to a pre-defined value range.

For each input message, the text associated with it will be analyzed in order to find

keywords (year, weather, city… etc), the extracted keywords may help in determining the

type of inputs expected for this input message.

When a keyword is found our approach will perform a mapping between the keyword and a

pre-defined regular expression or to a value range which represents the accepted values for

this keyword.

Figure 5.4. illustrates an example of the PORTTYPE element of a WSDL file for a Web

Service provides a weather Service, as shown, the PORTTYPE element consists of

portType name (“GlobalWeatherSoap”), an operation (“GetWeather”), and an input

message (“GetWeatherHttpGetIn”). This Service is simply gives the expected temperature

for a specific city.

<wsdl:portType name=" GlobalWeatherSoap ">

<wsdl:operation name=" GetWeather ">

<wsdl:input message="tns: GetWeatherHttpGetIn "/>

…

</wsdl:operation>

…

</wsdl:portType>

Figure 3-4 Weather Web service PortType

In the previous example the GetWeather operation has one input message which has a

descriptive text; GetWeatherHttpGetIn.

The descriptive text is analyzed to find keywords, for example the word Weather can be

extracted from the descriptive text which considered as a keyword since its already defined

in our dictionary.

36

Following our approach of assigning each keyword to a proper regular expression will be

useless in such cases because regular expression for such keywords cannot be used to

generate valid and invalid test data. Instead, our approach uses a pre-defined value range

which represents the expected values and its data type that can be concluded from the

semantic of such keywords.

Since our approach aims to assess the robustness quality attribute of Web Services we will

use the robustness testing technique (see section 3.5) to generate valid and invalid test data

for such keywords. According to robustness testing, generating test data will follow the

rules as shown in table 5.2:

Table 3-3 Generating test data using robustness testing

Rule Description

Min Valid test data, exactly the minimal value

for a specific domain

Min+ Valid test data, just above the minimal

value for a specific domain

Nom Valid test data, average value for a specific

domain

Max Valid test data, exactly the maximum

value for a specific domain

Max- Valid test data, just below the maximum

value for a specific domain

Min- Invalid test data, just below the minimal

value for a specific domain

Max+ Invalid test data, just above the maximum

value for a specific domain

The previous rules will generate seven different test data, two of them are invalid test data

and the rest are valid test data.

37

These test data will be used to test a Web Service and to assess the robustness quality

attribute for the Web Service under test in the presence of invalid inputs.

3.8 Generating Test Cases for non-descriptive text associated with input
messages

Considering the following PORTTYPE element of WSDL file for a simple Web Service

that convert Fahrenheit to Celsius and vice versa, the PORTTYPE element consists of two

operation, two input messages, and two output messages as shown in figure 5.5.

<wsdl:portType name="ConvertSoap">

<wsdl:operation name="FahrenheitToCelsius">

<wsdl:input message="tns:FahrenheitToCelsiusSoapIn"/>

<wsdl:output message="tns:FahrenheitToCelsiusSoapOut"/>

</wsdl:operation>

<wsdl:operation name="CelsiusToFahrenheit">

<wsdl:input message="tns:CelsiusToFahrenheitSoapIn"/>

<wsdl:output message="tns:CelsiusToFahrenheitSoapOut"/>

</wsdl:operation>

</wsdl:portType>

Figure 3-5 Example of input messages with its descriptive text

Following the steps of our approach, we need first to extract any useful information from

the associated text with each input message in order to find keywords.

The descriptive text for the first message is FahrenheitToCelsiusSoapIn, while the

descriptive for the second input message is CelsiusToFahrenheitSoapIn. We can notice that

neither the first input message nor the second can give us any useful keyword that can be

used to generate valid and invalid test data, so our approach fail with this example to find

any keyword and as a consequence to this failure, it is not possible to generate test data.

However, to handle this situation and any other similar situations, our approach will use the

input parameter data types together with constraining facets to generate test data.

38

It worth mentioning here, generating test data will be based on regular expressions or pre-

defined value space and the input parameter data types, in other words test data based on

regular expression or pre-defined value space will be generated in parallel with generating

test data based on input parameter data types and their associated constraining facets

whether the first method succeeded or not in order to reach more test data coverage.

To generate test data based on input parameters and their associated constraining facets, our

approach uses test case generation rules.

In order to generate valid and invalid test data our approach uses each data type with its

specific constraining facets, the following rules illustrate how test data can be generated for

the build-in data type and their associated constraining factes.

If DT = Type1 and CF = MinInclusive or MinExclusive then TD= {Min-1,Min,Min+1}

If DT = Type1 and CF = MaxIclusive or MaxExclusive then TD={Max-1,Max,Max+1}

If (DT = Type1) or (DT = Type2) or (DT = Type3) and CF = Enumeration then TD=

{value outside the set,value in the set,value has different data type,null}

If (DT = Type1) or (DT = Type2) or (DT = Type3) and CF = WhiteSpace then TD= {null,

tabs, space, multiple spaces}

If (DT = Type1) or (DT = Type2) and CF = pattern then TD= {the value deduced from the

pattern, apply the same perturbation strategy in section 5.4 }

If DT = Type1 and CF = Totaldigits or Fractiondigit then TD= {a value exceeds the max

allowed number of digits, a value exactly the max allowed number of digits, a value below

the max allowed number of digits }

If (DT = Type2) or (DT = Type3) and CF = Length then TD= {string with length-1,string

with the exact length, string with length+1}

If (DT = Type2) or (DT = Type3) and CF = MinLength then TD= {string with MinL-

1,string with the exact MinL, string with MinL+1}

39

If (DT = Type2) or (DT = Type3) and CF = MaxLength then TD= {string with MaxL-

1,string with the exact MaxL, string with MaxL +1}

Where DT: input parameter data type

 CF: constraining facet

 TD: test data

 Max: the maximum allowed value.

 Min: the minimal allowed value.

Type1= Byte || Decimal || Int || Integer || Long || negativeInteger ||

nonNegativeInteger || nonPositiveInteger || Short || unsignedLong || unsignedInt ||

unsignedShort || unsignedByte || Double || Float || date || DateTime || Duration ||

gDay || gMonth || gMonthDay || gYear || gYearMonth || Time

Type2= String || Entity || ID || IDREF || Language || Name || NCName || NMTOKEN

|| NormalizedString || Notation || Token || AnyURI || QName || Base64Binary ||

HexBinary

Type3= ENTITIES || IDREFS || NMTOKENS

The generated test data will be saved in XML file, valid and invalid test data will be sent in

a SOAP messages to the Web Service under test to assess the its robustness quality

attribute. The Web Service under test must respond with a response message for valid

inputs or with a fault message with proper fault error string for invalid inputs, otherwise, a

robustness problem is encountered.

3.9 The basic algorithm

Figure 5.6. Shows the basic algorithm for our approach in pseudo code:

Read WSDL file

For each input message in WSDL file {

 Read text associated with input message

 If (found Keyword) {

 If (found Reg. Exp.) generate test data based on Reg. Exp. perturbation rules

40

 Else generate test data based on pre-defined value range

 }

}

For each input parameter in WSDL file || XSD file {

 If (found constraining facet) Generate test data based on pre-defined generation rules

}
Figure 3-6 The algorithm

3.10 Summary

This chapter describes the proposed approach for generating test data. This approach is

based on the semantics that can be extracted from the descriptive text associated with input

messages and on analyzing input parameters data types. Modification strategy was

introduce to modify regular expressions in order to generate invalid test data and test data

generation rules was discussed for each built-in data type. Finally our approach algorithm

was developed in pseudo code.

4 CHAPTER FOUR: IMPLEMENTATION ISSUES,
EVALUATION AND APPLICATION AREAS

42

4.1 Introduction

In this chapter, we will show the implementation issues for our work. We will also present

where to use our approach. Then an evaluation for the correctness and effectiveness of our

approach is discussed by applying our approach to a real Web Service.

4.2 Implementation issues

The implementation environment of our approach requires any powerful programming

language such as JAVA to implement the GUI of our approach, and a compatible data base

such as oracle or MySQL to store the test data generated using the methods discussed in the

previous chapter.

4.3 Application areas:

Web Services testing techniques will be strengthened by adding our approach, since it’s

generate more realistic test data than the existing Web Services testing techniques.

Our approach for generating test data can be used in any Web Services domains.

4.4 Evaluation

We apply our algorithm on a real Web Service to evaluate its usefulness in generating test

data. The MailBoxValidator Email Validation Web Services. This Web Service provides

the ability to check e-mail addresses. This service can be used to reduce deceptive email

address in online accounts registration by checking email addresses validity.

Figure (6-1) represents the WSDL file for MailBoxValidator Email Validation Web

Services:

43

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tm="http://microsoft
.com/wsdl/mime/textMatching/"xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmln
s:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:tns="http://ws.fraudlabs.com/"xmlns:s="h
ttp://www.w3.org/2001/XMLSchema" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" x
mlns:http="http://schemas.xmlsoap.org/wsdl/http/"xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://ws.fraudlabs.com/">
<wsdl:types>
<s:schema elementFormDefault="qualified" targetNamespace="http://ws.fraudlabs.com/">
</xs:schema>
 <xs:element name=" EmailValidator " type="s0: EmailValidator " />
 <xs:simpleType name=" EmailValidator ">
 <xs:restriction base="xs: string ">
 < xs:minLength value="6"/>
 < xs:maxLength value="254"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
<s:element name="EmailValidatorResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="EmailValidatorResult" type="tns:EMAIL_VA
LIDATOR"/>
</s:sequence>
</s:complexType>
</s:element>
<s:complexType name="EMAIL_VALIDATOR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="IS_SYNTAX" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="IS_DOMAIN" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="IS_SMTP" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="IS_LEVEL" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="CREDITSAVAILABLE" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="MESSAGE" type="s:string"/>
</s:sequence>
</s:complexType>
<s:element name="EMAIL_VALIDATOR" nillable="true" type="tns:EMAIL_VALIDATOR"/>
</s:schema>
</wsdl:types>
<wsdl:message name="EmailValidatorSoapIn">
<wsdl:part name="parameters" element="tns:EmailValidator"/>
</wsdl:message>
<wsdl:message name="EmailValidatorSoapOut">
<wsdl:part name="parameters" element="tns:EmailValidatorResponse"/>
</wsdl:message>
<wsdl:message name="EmailValidatorHttpGetIn">
<wsdl:part name="EMAIL" type="s: EmailValidator "/>
</wsdl:message>
<wsdl:message name="EmailValidatorHttpGetOut">
<wsdl:part name="Body" element="tns:EMAIL_VALIDATOR"/>
</wsdl:message>
<wsdl:message name="EmailValidatorHttpPostIn">

44

<wsdl:part name="EMAIL" type="s: EmailValidator "/>
</wsdl:message>
<wsdl:message name="EmailValidatorHttpPostOut">
<wsdl:part name="Body" element="tns:EMAIL_VALIDATOR"/>
</wsdl:message>
<wsdl:portType name="EmailvalidatorSoap">
<wsdl:operation name="EmailValidator">
<wsdl:input message="tns:EmailValidatorSoapIn"/>
<wsdl:output message="tns:EmailValidatorSoapOut"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:portType name="EmailvalidatorHttpGet">
<wsdl:operation name="EmailValidatorOp">
<wsdl:input message="tns:EmailValidatorHttpGetIn"/>
<wsdl:output message="tns:EmailValidatorHttpGetOut"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:portType name="EmailvalidatorHttpPost">
<wsdl:operation name="EmailValidatorOp">
<wsdl:input message="tns:EmailValidatorHttpPostIn"/>
<wsdl:output message="tns:EmailValidatorHttpPostOut"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="EmailvalidatorSoap" type="tns:EmailvalidatorSoap">
.
.
.

</wsdl:binding>
<wsdl:service name="Emailvalidator">
.
.
.
</wsdl:definitions>

Figure 4-1 MailBox Validator WSDL file

The PORTTYPE element of the MailBox Validator WSDL file consists of three input

message, and each input message has one input parameter (EMAIL) of type Emailvalidator,

which is of base type “String” and has two constraining facets that restricts its acceptable

values (maxlenght and minlenght). When we apply our algorithm on the previous MailBox

Validator WSDL file we can have the following test data:

For the three extracted input messages we get the Keyword “Email” from the descriptive

text for each message. Then we map the Keyword “Email” to a predefined regular

45

expression “[w- \ .]+@ ([\w-] + \.) + [\w-] {2,4}”, and then use this regular expression to

generate valid and invalid test data.

For the input parameter (EMAIL) of type Emailvalidator, we generate valid and invalid test

data using the following generation rules:

If (DT = String) CF = MinLenght then TD= {string with MinL-1,string with the exact

MinL, string with MinL+1}

If (DT = String) CF = MaxLenght then TD= {string with MaxL-1,string with the exact

MaxL, string with MaxL +1}.

Table 6-2 shows the generated test data for the MailBox WSDL file using our approach.

Table 4-1 Test data for MailBox Validator WSDL file

Test data generated using Regular

Expression

TestEmail@testcomp.com

@TestEmailtestcomp.com

TestEmail@.com

TestEmailtestcomp.com

TestEmailtestcomp.com

TestEmail @testcomp.com

2011-0812-072531

Test data generated using test data

generation rules

i@g.c

i@g.cm

i@g.com

i…m.com Email length = 253

i…m.com Email length = 254

i…m.com Email length = 255

4.5 Assessing the robustness quality attribute of Web services

In order to assess the robustness quality attribute of Web services, the test data generated

in table 6.1 are used.

mailto:TestEmail@testcomp.com
mailto:TestEmail@testcompany.com
mailto:TestEmail@testcompany.com
mailto:TestEmail@testcompany.com
mailto:TestEmail@testcompany.com
mailto:TestEmail@testcompany.com
mailto:i@g.c
mailto:i@g.cm
mailto:i@g.com

46

Each test data is sent to the Web service under test in a SOAP message to evaluate the

robustness quality of the Web service, then the response of the Web service is analyzed to

determine its behavior in the presence of invalid test data.

The response of the Web service for invalid test data can be one of the following

scenarios:

• The Web service rejects the invalid test data and sends a proper error message:

for example if we send “2011-0812-072531” as an input value for the input

parameter “EMAIL” of the mailbox validator Web service, we assume that the

Web service rejects it and sends an error message for example “invalid input

data”, for this scenario and every similar scenarios where the Web service under

test rejects the invalid inputs, we assume that this Web service is robust.

• The Web service accepts the invalid test data and returns an output: in this

scenario a robustness problem is considered since the Web service under test

doesn’t behave the way we expected (rejects the invalid test data and return an

error message).

• The Web service hangs or crashes when receiving invalid test data: this scenario

also arise a robustness problem for the Web service under test since it doesn’t

handle invalid test data and moreover it hanged or crashed.

4.6 Comparison with similar works

The main difference between our work and other previous similar works is the use of

semantics in generating test data. Based on semantics we can compare our work with others

through the following comparison criteria’s:

1. Generating realistic test data that are more close to real world problem:

This thesis has introduced an approach to generate test data based on the semantics

that can be extracted from WSDL description of Web Services. The resulting test

data are more close to represent what is actually expected to be as an input for a

specific input parameter. In the other hand, none of the previous works have been

considered this criteria when they generate test data.

47

2. increasing the test coverage in an efficient and accurate way:

Previous works such as (De Melo & Silveira, 2011) introduced an approach to

generate test data that increases the test coverage but they did not considered test

data accuracy. In the other hand our approach was able to generate test data that

achieve coverage (by depending on both the semantics and syntax based on the

information extracted from WSDL’s specifications only), this added the efficiency

to our approach since the generated test data were designed automatically and

covers a widely range of test data possibilities. In addition our approach was also

able to generate more accurate test data by taking the semantics into account.

3. Generating test data for any Web Service regardless of the programming languages

used to build it:

In contrast of the previous work where they mainly depend on input parameters

specifications (input parameters specifications can be different even for the same

web service when using different Web services development tools to generate

WSDL files) to generate test data, our approach was able to generate test data to

assess the robustness quality attribute for any WSDL, no matter what programming

languages used to generate it by depending on the semantics of the keywords

extracted from the input messages inside WSDL.

5 CHAPTER FIVE: CONCLUSION AND FUTURE
WORKS

5.1 Conclusion: perspective and future works

Through our study about Web Services testing, we found that current methods did not use

semantics in the process of generating test data. We also found that the generated test data

using the current approaches still don’t provide a realistic test data that represent the

expected input data for the Web Service under test.

In section 1.5, we proposed four contributions to be done during this thesis. the first

contribution was achieved by introducing an approach in chapter 5 that can be used to

assess the robustness quality attribute of Web Services also we specify how test data can be

generated. The second and fourth contribution was done by introducing a new method in

generating test data depending on the semantics, using the semantics to generate test data

we can now generate test data for any WSDL regardless of the used programming

language. And we also successfully generate test data that is better and realistic.

Our work can be extended and developed in future to:

• Assessing other quality attribute of Web Services such as security and performance.

• Finding a way to let our approach learn to choose the appropriate test data generation

rule (introduced in section 5.6) without the need to examine each rule for every input

parameter data type.

• Extending our approach in a way that can handle complex data types and WSDL’s that

don’t have keywords or constraining facets.

• Finding an automatic way to reduce the effort and time taken in fining keywords.

• Generalizing our approach so we can depend only on WSDL semantics to generate test

data.

• Implementing a tool that demonstrates the effectiveness of the proposed Web Services

robustness testing approach.

50

REFERENCES
Albreshne, A. F. (2009). Web Services Technologies: State of the Art, University of Fribourg,

Switzerland. Technical Report No. 09-04, University of Fribourg, Department of
Informatics, Switzerland.

ANUPRIYA, J., SHARMA, S., SEEMA, S., & DEEPTI, J. (2010). Boundary value analysis for
non-numerical variables: Strings. Oriental Journal of Computer Science & Technology ,
Vol. 3 (2), 323-330.

Bartolini, C., Bertolino, A., Marchetti, E., & Polini, A. (2009). WS-TAXI: A WSDL-based Testing
Tool for Web Services. International Conference on Software Testing, Verification, and
Validation (pp. 326–335). Los Alamitos, CA, USA: IEEE Computer Society.

Bashir, R., Azam, F., Aqeel Iqbal, M., Khanum, A., & Malik, H. (2012). A Comparative Model for
Tradeoff Analysis of QoS Attributes in SOA. Journal of Basic and Applied Scientific
Research .

Bozkurt, M., Harman, M., & Hassoun, Y. (2010). Testing web services: a survey. Department of
Computer Science. King’s College London.

Casado, R., Tuya, J., & Younas, M. (2012). Testing the reliability of web services transactions in
cooperative application. Proceedings of the 27th ACM Symposium on Applied Computing
(SAC 2012). Riva, Trento, Italy.

Cavanaugh, E. (2006). Web services: Benefits, Challenges, and a Unique Visual Development
Solution. USA: Altova White Paper.

De Melo, A. C., & Silveira, P. (2011). Improving data perturbation testing techniques for Web
services. Information Sciences , 181 (3), 600-619.

De Virgilio, R. (2010). Meta-Modeling of Semantic Web Services. Services Computing
(SCC),2010 IEEE International Conference on, (pp. 162-169).

Dragoni, N. (2009). Toward Trustworthy Web Services - Approaches, Weaknesses and Trust-By-
Contract Framework. Proceeding WI-IAT '09 Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technology. 03,
pp. 599-606. Washington, DC, USA : IEEE Computer Society .

Fu, J., Hao, W., Bastani, F. B., & Yen, I.-L. Y. (2011). Model-Driven Development: Where Does
the Code Come From? , Insights Learned From a Case Study. Fifth IEEE International
Conference on Semantic Computing.

Hanna, S. (2008). Web Services robustness testing, Ph.D, Durham theses, Durham University.

51

Hanna, S., & Abu Ali, A. (2011). Platform Effect on Web Services Robustness Testing.
Communications of the Applied Computer Science Journal , 11 (2), 360- 366.

Hanna, S., & Alawneh, A. (2010). An Approach of Web Service Quality Attributes Specification.
2010. Communications of the IBIMA.

Hanna, S., & Munro, M. (2009). An Approach for WSDL-Based Automated Robustness Testing of
Web Services. Information Systems Development: Challenges in Practice, Theory, and
Education. vol. 2, pp. 493-504. Springer.

Huang, W.-l., & Peleska, J. (2013). Exhaustive Model-Based Equivalence Class Testing. The 25th
IFIP International Conference on Testing Software and Systems, ICTSS2013, Lecture
Notes in Computer Science. vol(8254), pp. 49-64. Springer.

IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE Computer
Society.

Jorgensen, P. C. (2013). Software Testing: A Craftsman’s Approach, Fourth Edition. CRC Press.

Khan, M. E. (2012). A Comparative Study of White Box, Black Box and Grey Box Testing
Techniques. Vol. 3, No.6.

Khan, M. E. (2011). Different Approaches to White Box Testing Technique for Finding Errors.
International Journal of Software Engineering and its Applications , vol. 5, no. 3.

Kumar, S., & Varalakshmi, P. (2012). Dynamic Web Service Composition based on Network
Modeling with Statistical Analysis and Backtracking. International Journal on Web ervice
Computing (IJWSC) , 3 (2).

Laranjeiro, N., Vieira, M., & Madeira, H. (2014). A Technique for Deploying Robust Web
Services. Services Computing, IEEE Transactions on. vol.7, no.1, pp. 68-81. IEEE.

Lee, C.-H., & Hwang, S.-Y. (2009). A Model for Web Services Data in Support of Web Service
Composition and Optimization. Services - I, 2009 World Conference on (pp. 384 - 391).
Los Angeles, CA: IEEE.

Li, N., Xie, T., Jin, M., & Liu., C. (2010). Perturbation-based user-input-validation testing of web
applications. Journal of Systems and Software (JSS) , 83(11), 2263–2274.

Makhlughian, M., Hashemi, S. M., Rastegari, Y., & Pejman, E. (2012.). WEB SERVICE
SELECTION BASED ON RANKING OF QOS USING ASSOCIATIVE
CLASSIFICATION. the International Journal of Web Service Computing (IJWSC) , 3 (1).

52

Moreira, A. M., Antunes, C. H., & Ramal, d. M. (2010). Application of a Syntax-based Testing
Method and Tool to Software Product Lines. National Institute of Science and Technology
for Software Engineering-INES .

Noikajana, S., & Suwannasart, T. (2009). An improved test case generation method for web
service testing from wsdl-s and ocl with pair-wise testing technique. Computer Software
and Applications Conference, COMPSAC '09. 33rd Annual IEEE International. volume 1,
pp. 115 - 123. IEEE.

O’Brien, L., Merson, P., & & Bass, L. (2005). Quality Attributes and Service-Oriented
Architectures. (CMU/SEI-2005-TN-014), Carnegie Mellon University, Software
Engineering, Pittsburgh.

Rani, B. P., Rao, K. V., & Devi, K. M. (2010). Architecting Secure Web Services using Model
Driven Agile Modeling. International Journal of Engineering Science and Technology , 2
(9), 4603-4609 .

Rayns, C., Burgess, G., Cooper, P., Fitzgerald, T., Goyal, A., Klein, P., et al. (2010). Application
development for CICS Web services (2nd ed.). The Free Library, IBM - Int'l Tech Support
Org.

Salva, S., & Rabhi, I. (2009). Automatic Web Service Robustness Testing from WSDL
descriptions. In Proceedings of the 12th European Workshop on Dependable Computing
(EWDC ’09). Toulouse, France.

Shah, M., Verma, Y., & Nandakumar, R. (2012). AN AUTOMATED END-TO-END MULTI-
AGENT QOS BASED ARCHITECTURE FOR SELECTION OF GEOSPATIAL WEB
SERVICES. XXXIX-B4.

Sun, W., Li, S., Zhang, D., & Yan, Y. (2009). A Model-Driven Reverse Engineering Approach for
Semantic Web Services Composition. Software Engineering, 2009. WCSE '09. WRI World
Congress on. 3, pp. 101-105. Xiamen: IEEE.

W3C. (2010, May). Web Services description language (WSDL), 2 part 1: Core language.
Retrieved May 2010, from <http://www.w3.org/TR/wsdl20/>

W3C. (2010, May). Web Services glossary. Retrieved May 2010

W3C. (2008, December 9). XML schema part 2 : Dtatypes. Retrieved from W3C Recommendation
.

6

53

50Bملخص
تعتبر خدمات الويب من اهم التطبيقات المستخدمة حديثا وتأتي هذه الاهمية من قدرتها على التكامل والاتصال مع

التطبيقات الموزعة داخل شبكة الانترنت بعض النظر عن البيئة الغير متجانسة التي تعمل بها هذه التطبيقات وكذلك

 .بعض النظر عن لغات البرمجة المستخدمة لبناء هذه التطبيقات

وعلى الرغم من الانتشار الواسع لخدمات الويب فأن هناك بعض المشاكل التي تحد من انتشارها واعتمادها من

قبل الاشخاص والمنظمات لتكون مكون اساسي في اعمالهم. واحده من هذه المشكلات هي صعوبة وعدم قدرة الطالب

للخدمة لتحديد ما اذا كانت الخدمة المقدمة من مقدم الخدمة قابلة للثقه لديه ام لا وبتالي عدم قدرته على تحديد مستوى

 جودة الخدمة المقدمة .

 لزيادة مستوى الثقة ما بين مقدم الخدمة ومستخدم الخدمة هي باستخدام الفحص للخدمة قبل طلبها من ىطريقة مثل

قبل طالب الخدمة، حيث يعطي الفحص طريقة اتوماتيكية لتقييم نوعية خاصية المتانه لخدمة الويب المقدمة وقياس

 وجود ملف وصف الخدمة فقطالطريقة التي تتعامل بها الخدمة في حالة وجود مدخلات خاطئة. عملية الفحص تتطلب

)WSDL.حتى يتمكن طالب الخدمة من قياس مدى نوعية خاصية المتانه لخدمة ويب معينة (

تقدم هذه الاطروحة نهج جديد بحيث يمكن استخدامة من قبل طالب الخدمة لتقييم وقياس نوعية خاصية المتانه

 للخدمات الويب.

) ومن ثم بناء WSDLالنهج المتبع في هذه الاطروحة مبني علي تحليل وثائق لغة وصف خدمات الويب (

حالات اختبار بناء على المعنى الذ يمكن استخراجه من رسائل الادخال الموجودة داخل ملف لغة وصف خدمات الويب

وكذلك على نوع البيانات لمتغيرات الادخال ومن ثم استخدام حالات الاختبار المنشئة لتقييم نوعية خاصية المتانه لخدمة

 الويب.

هذا النهج الجديد سيعطي حالات اختبار افضل تمثل الخدمة المقدمة من خدمات الويب بشكل اكثر واقعية واكثر

 منطقية كما انه يعمل على فحص نوعية الخصائص لخدمات الويب بشكل اكثر فاعلية.

54

تقييم نوعية خاصية المتانه لخدمات الويب بالاعتماد على الدلالات
 المستخرجه من لغة وصف خدمات الويب

 بواســطة

 مروان فايز عبدالله المومني

 بإشــراف

 د. سامر حنا

 قدمت هذه الرسالة استكمالاً لـمـتطلبات الحصول على درجة

 الــمـاجـسـتير في عـلـم الـحـاسـوب

 عـمـادة البحث العلمي والدراسات العليا

 جامعة فيلادلفيا

2014 آب

	 Authorization Form
	Semantics based Assessment of the Robustness Quality Attribute of Web Services
	DEDICATION
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	1 CHAPTER ONE: INTRODUCTION
	1.1 Introduction
	1.2 Web Services advantages and challenges
	1.3 Research Problem
	1.4 Motivation
	1.5 Research Objectives
	1.6 Research Contributions
	1.7 General structural Design
	1.8 Thesis Outline
	1.9 Summary

	2 CHAPTER TWO: BACKGROUND
	2.1 Introduction
	2.2 Web Services
	2.3 The Web Services Model
	2.4 Web Service standards
	2.4.1 XML:
	2.4.2 XML schema:
	2.4.3 Web Service Description Language (WSDL):
	2.4.4 Simple Object Access Protocol (SOAP):
	2.4.5 Universal Description, Discovery and Integration (UDDI):

	2.5 Web Services robustness quality attribute
	2.6 Testing
	2.7 Testing techniques:
	2.8 Assessing Web Services quality attribute
	2.9 Literature Review for Web services Testing
	2.9.1 A Technique for Deploying Robust Web Services
	2.9.2 An Approach for WSDL-Based Automated Robustness Testing of Web Services
	2.9.3 Automatic Web Service robustness testing from WSDL descriptions

	2.10 Summary

	3 CHAPTER THREE: A WSDL-BASED APPROACH TO ASSESS THE ROBUSTNESS OF WEB SERVICES
	3.1 Introduction
	3.2 Analyzing WSDL
	3.3 Analyzing Text associated with Input Messages
	3.4 Building Keywords dictionary
	3.5 A Model for Robustness Testing of Web Services
	3.6 Generating Test Cases for text associated with input messages based on regular expression
	3.7 Generating Test Cases for text associated with input messages based on pre-defined values domain
	3.8 Generating Test Cases for non-descriptive text associated with input messages
	3.9 The basic algorithm
	3.10 Summary

	4 CHAPTER FOUR: IMPLEMENTATION ISSUES, EVALUATION AND APPLICATION AREAS
	4.1 Introduction
	4.2 Implementation issues
	4.3 Application areas:
	4.4 Evaluation
	4.5 Assessing the robustness quality attribute of Web services
	4.6 Comparison with similar works

	5 CHAPTER FIVE: CONCLUSION AND FUTURE WORKS
	5.1 Conclusion: perspective and future works
	REFERENCES
	ملخص

