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Abstract

Artificial Neural Network (ANN) is currently a 'hotesearch area in medicine and this work is
based on predicting the behavior of an organ ofimdn body called pancreas by using neural
networks. Neural networks, with their remarkabbdity to derive meaning from complicated or
imprecise data, can be used to extract patternslaredt trends that are too complex to be noticed
by either humans or other computer techniques.riigiity to learn by example makes them very
flexible and powerful. So we have data set from @Dthree different groups of subjects. From data
set examples, neural networks were learned by usiogalgorithms, Radial Basis Function (RBF)
and General regression Neural Network (GRNN). Algarning, a simulation (testing) for learned
data has been made and a comparison between lgutitrahs has been done subject to the
learning performance. Furthermore a comparison émtwRBF and GRNN algorithms was done

based on the ability of both networks to generahipait data not seen before.

All simulations were made by MATLAB 7 neural netwdoolbox and the results showed that
RBF and GRNN are good function approximators. I waticeable that RBF and GRNN were fast
training algorithms even GRNN was faster. It wapapnt that neural network was a good choice
for predicting a behavior of nonlinear and complystems such as pancreas. Also the results
showed that the performance of RBF in learning better than GRNN, and the ability of GRNN in

generalization or testing was better than RBF.
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Chapter 1

Introduction



1.1 Motivation

Diabetes is a disease that is characterized byesated blood Glucose level. Diabetes can be
caused by a reduction of the production of Inshiirthe pancreas (type | diabetes) or by the Insulin
being less effective at moving Glucose out of tleoth stream and into cells that need it (type Il
diabetes). A blood Glucose level that is elevatmdaf long period of time can result in vascular,
neurological or metabolic complications, such an&y failure, blindness and an increased chance
of heart attacks [26]

Diabetes is a widespread chronic illness that attsolor a large part of the health care budget.
Diabetes affects approximately 20% of Jordaniarpfgeaccording to statistics made by Jordanian
diabetes national center [27]. In USA about 20.8lioni people, approximately 7.0% of the
population of USA have diabetes according to stesismade in 2005Diabetes was the sixth
leading cause of death listed on U.S. death ceatés in 2002 [26].

The function of the pancreas which secretes horsthrag regulate blood Glucose levels is very
important to prevent diseases such as diabete® Stody the pancreas model and apply it to the

neural network models is strong motivation for tifissis.

Neural networks are widely used in the field of ltregare for a range of different purposes.
Also in the field of diabetic treatment neural netis can be found, for example for diagnosing
diabetes, selecting a proper treatment based ammder of variables or simply for supporting the
decision making process of a physician. But neuetivorks are becoming more common in
diabetic management as well. Insulin pumps for gtancan be equipped with an Insulin dosage

controller that is driven by a model based on aaleetwork.



Another motivation for this work is to study somé Artificial Neural Network (ANN)
algorithms and to evaluate their application onlin@ar and complex system such as pancreas, and
to compare performances of theses algorithms wghect to pancreas.

1.2 Objectives

The primary objective of this research is to stuadtificial neural network algorithms for
function approximation. More specifically, the otfjge of the work in this thesis can be

summarized as:

* To study the models of the radial basis functiomrak network (RBFNN) and general
regression neural network (GRNN) and apply themrealict the behavior of the pancreas,
GRNN and RBF are known as good function approximsatfast training algorithms, and
capable of modeling any nonlinear and complex systefficiently with no need for a priori

knowledge about the function of the system.

* To evaluate the performance of neural network imgex and nonlinear systems such as
pancreas.

* To compare the performance of radial basis functioth general regression neural network
with respect to pancreas model.

* Neural network algorithms, RBF and GRNN, will beplgd to three different models
according to the types of subjects in the trairsegused in this study, these groups are: a
group of patients with Type 2 Diabetes Mellitus D), a group of people with Normal
Glucose tolerance (NGT), and a group of people mipaired Glucose Tolerance (IGT).

* Learning and testing the neural network algorithmilsbe taken place in the data presented
in this study. And the neural network algorithmdl we compared subject to learning and
testing.



1.3 Major Contributions of the thesis

Resembling the interactions between Glucose coratéort levels and amount of Insulin
injected in the bodies of diabetics [24], classifyia patient as diabetic or not subject to riskoiiesc
such as age, gender, family history of diabetegymsass index (BMI)..etc [23], modeling Insulin
dosage controller in artificial pancreas, modelihg blood Glucose metabolism of a diabetic [22],

diagnosing diabetes [8] , modeling of the Glucasssilin dynamics of diabetic [12] , and prediction

of patients with acute pancreatitis [9] were magledliferent neural network algorithms in past.
Also comparisons between the different neural nkweodels have been made, such as multilayer
perceptron (MLP), feedforward backpropagation (PFBradial basis function neural network
(RBFNN), general regression neural network (GRNRQJynomial neural network (PNN) and

others.

Major contribution of this thesis can be summariasdollows:

Studying neural network models and apply them txliot the behavior of the pancreas is the
main contribution of this study. There has beenhmpblicity about the ability of artificial neural
networks to learn and generalize, Learning is exjait to finding a surface in a multidimensional
space that provides a best fit to the training adtde generalization (i.e., response of the nekwor
to input data not seen before) is equivalent touee of this multidimensional surface to interpslat
the test data, so the neural network will be ledioeapproximate a function equivalent to the targe
function which is pancreas, when new data coms butside, this neural network must has the
ability to interpolate or test data. RBF networke applied to many kinds of problems include
function approximation, data classification, préidic, and data clustering. GRNN is used for

function approximation (regression).

In this study we will use both GRNN and RBFNN tgegximate the function of pancreas.
Radial basis function networks are non-parametodets. By non-parametric models, it means that
there is no a priori knowledge about the functioat is to be used to fit the training set. And ibis
applied to pancreas; we don’'t have a priori knogéedbout the relations between the inputs to

pancreas and the output.



Another contribution of this study is to do comgan between radial basis function and
general regression neural networks, in this wodomparison will be made not just for the results
but intensive study will be made according to fiorctapproximation capability and generalization
ability for each algorithm.

1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 provides a literature review of usingraeumetwork algorithms to regulate the
Glucose levels in the blood, many algorithms wesedusuch as multilayer perceptron (MLP),
Feedforward Backpropagation (FFBP), radial basisction neural network (RBFNN), general
regression neural network (GRNN), Polynomial neanstivork (PNN).

Chapter 3 provides a brief about the pancreas endlifie pancreas is working.

In chapter 4, artificial neural networks is briefiytroduced, then radial basis function neural
network is introduced and compared with other reumgtwork algorithms, finally general
regression neural network is introduced.

Chapter 5 presents designing the RBF and GRNN Imdolepancreas, the architecture of both
networks will be introduced, values of neural netwparameters such as number of neurons and
spread values are determined, method of desighmgnbdels is presented, and implementing the
neural network algorithms, radial basis and genezgtession neural algorithms to model the

pancreas will be presented.

In chapter 6 results are shown, and a comparisbmelea the two models RBF and GRNN
based on their performance is made. Finally, Caigtu and future work are summarized in
Chapter 7.



Chapter Two

A literature review of neural network algorithms used for regulating Glucose



2.1 Classification patients with pancreas’s diseaseising ANN

Performance of the RBF neural network was compaveed Multilayer Perceptron (MLP)
network model and the classical logistic regressiondiabetes database [23]. The risk factors
considered for analysis are age, gender, familiohisof diabetes, body mass index (BMI), total
cholesterol level (TC), triglycerides (TG), low cy lipids (LDL) and high-density lipids (HDL).
The efficiency of the constructed models was evallidby comparing the sensitivity, specificity
and overall correct predictions for datasets. Téwilts indicate that the RBF network has a better
performance than other models. The sensitivity gpetificity of both neural network models had a
better predictive power compared to logistic regims Even when compared on an external
dataset, the neural network models performed b#tter the logistic regression. When comparing,
RBF and MLP network models, [23] found that RBF lhatter performance in testing and external
datasets. [23] Indicated the good predictive cdjpasi of RBF neural network. Also the time taken
by RBF is less than that of MLP in the application.

The performance of General Regression Neural N&WGRNN) was examined on the Pima
Indian Diabetes (PID) data set in [8]. The perfonoeof the standard Multilayer Perceptron (MLP)
and radial basis function (RBF) feed forward neumatworks were also examined for the
comparison. All patients in PID data set in [8] eé&ima-Indian women at least 21 years old. The
binary response variable takes the values ‘0’ grwhere ‘1’ means a positive test for diabetes and
‘0’ is a negative test for diabetes. There werdedinical findings: 1) Number of times pregnant.
2) Plasma Glucose concentration a 2 hours in anhGraose tolerance test. 3) Diastolic blood
pressure. 4) Triceps skin fold thickness. 5) 2-Heenum Insulin. 6) Body mass index. 7) Diabetes
pedigree function. 8) Age. The performances ofMii€®, RBF and GRNN structures in are given in
Table (2.1).



Table (2.1) The performances of the MLP

, RBF aRN® in this study.

ALGORITHMS | TRAINING SET | TEST DATA mean total correct prediatio
MLP 88.19 % 77.08 % 85.41%

RBF 100 % 68.23 % 92.06%

GRNN 82.99 % 80.21 % 82.29%

The performance of RBF was worse than the MLP &adesting. The best result achieved on
the test data was the one using the GRNN struai®0e21%). Results showed that, general

regression neural network (GRNN) could be a goati@actical choice to classify a medical data.

Evaluation of the ability of an artificial neuraletwork (ANN) that uses radiologic and
laboratory data to predict the outcome in patievitt acute pancreatitis was studied by [9]. The
ANN was trained and tested by using a round-robahnique, and the performance of the ANN
was compared with that of linear discriminate asiglyand Ranson and Balthazar grading systems.
A back-propagation ANN was developed with the sigsmstatistically significant parameters
(blood pressure, extent of inflammation, fluid agpon, serum creatinine level, serum calcium
level, and the presence of concurrent severe d)nd2erformance of the ANN was statistically
significantly better than the Ranson and BalthaZae six findings described earlier were the six

input nodes, and the positive or negative patieitmme was the output nade

2.2 Predicting blood Glucose levels using ANN

Predicting the time course of blood Glucose leassn the complex interaction of Glucose
counterregulatory (Glucose rising) hormones andlinsvas demonstrated by feedforward neural
network in study by [14]. The system consistedh& &ctivation of hormones such as Glucagon,
catecholamines (Epinephrine, Norepinephrine), Gnowormone (GH), and Cortisol upon low
concentrations of blood Glucose (hypoglycemia). §hts were updated using Resilient
Propagation (RProp), the time course of blood (Bedevels demonstrated the best predictability
using RProp as the training algorithm compared B#lkpropagation algorithm.



2.3 Modeling Glucose-Insulin by ANN

Two types of neural networks (NN’'s) were experineentin building the model of the
interactions between Glucose concentration levetsaanount of Insulin injected in the bodies of
diabetics. Comparisons between Levenberg- MarquyahMj training algorithm of multilayer feed
forward neural network (FFNN) and Polynomial Netlw@PN'’s) were done. The components of a
training vector were the present Glucose level R&hort term Insulin STI, midterm Insulin MTI,
time period, and meal. The single output of the ehdhs a target of the next Glucose level NGL.
PN’s model could not learn to predict correctly thext values of Glucose levels (NGL). PN's are
only good “mappers”. The results demonstrated Hil@yaof the Levenberg-Marquardt (LM) NN to
model the whole set of data [24].

2.4 Modeling Glucose metabolism by ANN.

The application of neural networks to modeling bkeod Glucose metabolism of a diabetic was
studied. In particular, recurrent neural networkd &me series convolution neural networks were

considered, and then compared to linear modeldaandnlinear compartment models [22].

The data set consisted of the protocol of a male tydiabetic patient over a period of 63 days.
During that time period, times and dosages of insuniections (basal Insulin and normal Insulin),
the times and amounts of food intake (fast, intefiate, and slow carbohydrates), the times and
durations of exercise (regular or intense) andllo®d Glucose level was the output node. A
Feedforward Multi-layer Perceptron (MLP) was used da recurrent fashion since previous
predictions were used as inputs. Experiments shdwadthe inclusion of a proper error model
improves performance considerably.

In combination with the linear error model theugent neural network is a powerful model for
blood Glucose prediction and gave best resultscangderformed both a compartment model and

the time series convolution neural network approach



Chapter 3

The Pancreas And It's Endocrine System



3.1 Pancreas

The pancreas is a gland organ in the digestive eanttbcrine systems of human. It is both

exocrine (secretingpancreatic juicecontaining digestive enzyme} and endocrine (producing

several importanhormonesincludingInsulin, Glucagon. In humans, the pancreas is a 15-25 cm

(6-10 inch). It weighs between 65g - 75g. One & tiigans behind the abdominal cavity, it is
located posterior to the stomach and in close &smt with the duodenum. And it is often

described as having mainly three regions: a heady kand tail. See figure (3.1) and (3.2)

respectively [29].
Starnach
Pancreas % Dendrites
Gall bladder l T \ %/ ~
4 Synapse
/ V\f’ ~ Wof
Cummonbde£-“ o /\/\_/7;‘
‘7 e { ,
“"""--_.
Pancreatic duct N
Dund!num F'j\tmag
Figure 3.1 location of the Figure 3.2 regions of pancreas Figure 3.3: biological neuron
pancreas in human body 1: Head of pancreas

4: Body of pancreas, 11: Tail of pancreas

Here we can find similarity between the shape ef plancreas and the biological neuron see
figure (3.3) above, the neuron is a simple procgssnit that receives and combines signals from
many other neurons through filamentary input pathes dendrites. Dendrites are connected with the

main body of the nerve cell, the soma. And the oie@nds with axon (the tail) [15].


http://en.wikipedia.org/wiki/Exocrine_gland
http://en.wikipedia.org/wiki/Pancreatic_juice
http://en.wikipedia.org/wiki/Digestion
http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Endocrine_system
http://en.wikipedia.org/wiki/Hormone
http://en.wikipedia.org/wiki/Insulin
http://en.wikipedia.org/wiki/Glucagon

3.2 Endocrine pancreas

Under a microscope, when properly stained, it &ye¢a distinguish two different tissue types in

the pancreas. As seen in table (3.1). These regmmespond to the main pancreatic functions [29]:

Table 3.1 regions of pancreas correspond to tha peaicreatic functions

Appearance

Region

Function

light staining circles (islets qgfEndocrine

secretes hormones that regulate bl

pod

Langerhans) pancreas Glucose levels
darker surrounding tissue Exocrine produces enzymes that break ddg
pancreas digestible foods

wn

Our work will be using the artificial neural netwsrmodels for endocrine pancreas. Because

the main function of islets of langerhans is regatathe level of Glucose in the blood. There are

four main types of cells in the islets of Langerhahhey are relatively difficult to distinguish ogi

standard staining techniques, but they can beifiabby their secretion as shown in table (3.2):

Table 3.2 types of cells in the islets of langeghelassified by their secretion

Name of cell§ Endocrine product % of islet cel|lRepresentative function
beta cells Insulin andmylin 50-80% lower blood sugar
alpha cells Glucagon 15-20% Raise blood sugar
delta cells Somatostatin 3-10% inhibit endocrineqoaas
PP cells Pancreatic polypeptifé% inhibit exocrine pancreas

The endocrine system is an information signalingtesy much like the nervous system.

However, the nervous system uses nerves to comdigctation, whereas the endocrine system

uses blood vessels as information channels. Glaxdsed in many regions of the body release into


http://en.wikipedia.org/wiki/Amylin

the bloodstream specific chemical messengers catledones, which regulate the many and varied
functions of an organism [29].

Feedback is both a mechanism, process and sigitatltooped back to controlsgstemwithin
itself. This loop is called the feedback loopcéntrol systenmusually has input and output to the
system; when the output of the system is fed battkthe system as part of its input, it is called t
"feedback”. Feedback and regulation are self rdlaiéhe negative feedback helps to maintain
stability in a system in spite of external chandess related tohomeostasisNegative feedback
(shortened to NFB) is a type tdedbackin which thesystemresponds in an opposite direction to
the perturbation It is a process of feeding back to the input & p&a systen's output, so as to
reverse the direction ahangeof the output. This tends to keep the output fidranging, so it is
stabilizing and attempts to maintain constant conditions. Titen results inhomeostasiqin
biology) such that the system will return to its origisal pointautomatically. Examples of this are

numerous, from the regulating of body temperattoeéhe regulating of bloo&lucoselevels. The

disruption of negative feedback can lead to undbRrresults: in the case of blood Glucose levels,
if negative feedback fails, the Glucose levelshe blood may begin to rise dramatically, thus
resulting inDiabeteq25]. The principle of negative feedback contsolliustrated by the diagram in

figure (3.4) below:

Message

!ﬁ Receptors ——=Effectors
Factor Iincrease m Response

7

Factor Mo change in factor o Factor
| il
MNorm MNorm
Fac&%ec{’ease message Corrective Response
Receptors ——— = Effectors

Figure 3.4 mechanism of negative feedback

The pancreas also works in the same mechanisne ofdpative feedback. The receptors of the
pancreas are responsible for monitoring Glucoseldew the blood. Two types of cells release two
different hormones from the pancreas, Insulin ahec&on, these hormones target the liver, one or
the other depending on the Glucose concentratiorcases where Glucose levels increase, less

Glucagon and more Insulin is released by the pasaad targets the liver. In cases where Glucose


http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/Homeostasis
http://en.wikipedia.org/wiki/Feedback
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Perturbation
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Change
http://en.wikipedia.org/wiki/Stability
http://en.wikipedia.org/wiki/Stability
http://en.wikipedia.org/wiki/Homeostasis
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Setpoint
http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Diabetes

levels decrease, less Insulin and more Glucagozléased by the pancreas and targets the liver

(see figure 3.5).

Pancreas receptors |[— | Liver

/ More Insulin \

Glucose increase Glucose >glycogen
Glucose norm R Glucose norm
No deviation
Glucose decrease Glycogen >Glucose

\\ More Glucagon /

| Pancreas recentors |—> Liver

Figure 3.5 mechanism of regulating blood sugar

3.3 Pancreas features

After studying pancreas, and how pancreas is wgrkire conclude that these features are the
most important features in pancreas, and we wdlthem as input and output to pancreas, and next
is a summary for these features.

1. Glucose:

Glucose is a simple sugar that serves as the roaices of energy for the body. The carbohydrates
we eat are broken down into Glucose (and a fewrasiraple sugars), absorbed by the small
intestine, and circulated throughout the body. Mudsthe body’s cells require Glucose for energy
production; brain and nervous system cells not aely on Glucose for energy, they can only

function when Glucose levels in the blood remaiovaba certain level [28].



2. Insulin and C-peptide:

The synthesis of Insulin begins at the translatainthe Insulin gene, which resides on
chromosome 11. This primary translation producta#ied preprolnsulin, once the preprolnsulin
reaches the endoplasmic reticulum, prolnsulin éatad. Prolnsulin consists of three domains: an
amino-terminal B chain, a carboxyl-terminal A chaand a connecting peptide in the middle
known as the C-peptide. Within the endoplasmicudtim, prolnsulin is exposed to several specific

peptidases that remove the C-peptide and gené@atadture and active form of Insulin [28].

3. Glucagon:

pancreatic hormone released by alpha cells ofdslaf langerhans which is secreted to tell the
liver to turn some glycogen back into Glucose whkrod Glucose level is below the normal level,
leads in raising the blood Glucose levels [27].

4. Glucagon-like peptide-1 (GLP-1):

Glucagon-Like Peptide-1 (GLP-1) is derived from trenscription product of theroGlucagon
gene. The major source of GLP-1 in the body isitiestinalL cell that secretes GLP-1 aggat

hormone[29]. The known physiological functions of GLP+iciude:

* Increasegnsulin secretion from theancreasn aGlucosedependent manner.

» Decrease§lucagonsecretion from thpancreas

5. Glucose-dependent Insulinotropic Peptide (GIP):

Glucose-dependent Insulinotropic Peptide (GIP) isnamber of the secretin family of

hormones GIP, along withGlucagon-like peptide-{GLP-1), belong to a class of molecules

referred to asncretins [19] It is now believed that the function of GIB to inducelnsulin

secretion. Incretins are a type gdstrointestinal hormonthat cause an increase in the amount of
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Insulin released from the beta cells of the islets of leahgns after eating, even before blood
Glucoselevels become elevated. As expected, they alsibiinBlucagonrelease from the alpha
cells of the Islets of Langerhans. The two maindidete molecules that fulfill criteria for an
incretin areGlucagon-like peptide-{GLP-1) and. Glucose-dependent Insuliniotropictiep(GIP)

[6].

Figure (3.6) summarize how the endocrine pancreddrecretins hormones regulating the Glucose

level.

Islands of langerhans
Alpha cells

@)

E B B E S S S S EEEE IS S EEEEEEEEEED
w BLOOD Regulated GIu@e

L N N N NN NENENNERERILE -2 NNENENRNDNERSNNNNENDHNEHN.]
Insulin

O C-peptide

Beta cells

intestinal L cell

Figure 3.6 how blood Glucose is regulated by paxre

As seen in the figure 3.6, pancreas has endocyisiera called islands of Langerhans, they
consist two types of cells called Alpha cells aneteBcells. Alpha cells are producing Glucagon.
Beta cells are producing insulin and C-peptide.yThave been discussed before. Other hormones

are secreted bintestinalL cell called GIP and GLP-1. so we will consider thesertumes as input

features for pancreas. And these hormones togeiligegulate the level of Glucose, so the output

of the pancreas will be regulated Glucose.
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Chapter 4

Artificial Neural Networks Algorithms for Approxima ting Function



4.1 Artificial Neural Networks

One type of network sees the nodes as ‘artificalrans’. These are called artificial neural
networks (ANNSs). An artificial neuron is a compuatl model inspired in the natural neurons.
Natural neurons receive signals through synapsested on the dendrites or membrane of the
neuron. When the signals received are strong enaigipass a certain threshold), the neuron is
activatedand emits a signal though tlaon This signal might be sent to another synapse, and
might activate other neuronshe complexity of real neurons is highly abstractdten modeling
artificial neurons. These basically consist of inputs (likeapges), which are multiplied by weights
(strength of the respective signals), and then cmeth by a mathematical function which
determines the activation of the neuron. Anothecfion (which may be the identitgpmputes the
output of the artificial neuron (sometimes in degemce of a certaithreshold) [15]. ANNs

combine artificial neurons in order to process tinfation see figure (4.1).
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Figure 4.1 an artificial neuron

The higher a weight of an artificial neuron is, gteonger the input which is multiplied by it
will be. Weights can also be negative, so we cantlsat the signal is inhibited by the negative
weight. Depending on the weights, the computaticth® neuron will be different. By adjusting the
weights of an artificial neuron we can obtain thepoit we want for specific inputs. But when we
have an ANN of hundreds or thousands of neurongoitld be quite complicated to find by hand
all the necessary weights. But we can find algarghwhich can adjust the weights of the ANN in
order to obtain the desired output from the netwdiks process of adjusting the weights is called

learning or training. The number of types of ANN=laheir uses is very high. The differences in



them might be the functions, the accepted valuid® learning algorithms and the topology (figure
4.2) the artificial neuron in figure (a) whefas the activation function and X1 to X4 are thpuh
vectors and wl to w4 are the weights and o is titpud, in figure (b) the multilayered artificial

neural network. [15].

¢ Hidden layer

(a)  Artificial neuron (b) Multilayered artificial neural network

Figure 4.2 Architecture of an artificial neuron anchultilayered neural network

The learning in neural networks may be classifiednhy into two sorts. These are supervised
learning and unsupervised learning. In supervisaching, an input vector is presented at the inputs
together with a set of desired responses, onedcin eode, at the output layer. A forward pass is
done, and the errors or discrepancies betweenetsieed and actual response for each node in the
output layer are found. These are then used tordete weight changes in the net according to the
prevailing learning rule. The term supervised oréges from the fact that the desired signals on

individual output nodes are provided by an exteteather [15].

The best-known examples of this technique occuhénbackpropagation algorithm, the delta
rule, and the perceptron rule. In unsupervisednlagr (or self-organization), a (output) unit is
trained to respond to clusters of pattern withimitiput. In this paradigm, the system is supposed t
discover statistically salient features of the ingopulation. Unlike the supervised learning
paradigm, there is no a priori set of categori¢és which the patterns are to be classified; rattier,

system must develop its own representation ofrtpatistimuli [15].



4.2. Radial basis function neural network

The radial basis function neural networks are oally motivated by the locally tuned response
in biological neurons. Their activation function§ the hidden neurons are determined by the
distances between the input vector and prototymtorv® RBF neural network has gained much
popularity in the past decades due to its fastitngiand its universal approximation capabilitytwit
local responses, which can approximate any contimdianctions with arbitrary precisions. Usually
the RBF network contains three layers: the inpyedathe hidden layer and the output layer. Input
attributes are fed into the hidden layer linearlyhwa unit weight through the input layer. The
hidden units provide a nonlinear transformatioralset of radial basis functions that constitutes th
basis for the input when they are mapped into gaee of the hidden neurons. The output layer of

RBF network only computes the linear combinatiothef outputs from the hidden layers [17].

There are many types of radial basis functions sischhin-Plate-Spline function, Multiquadric
function, Inverse Multiquadric function, Gaussiamdtion. Among these types of radial basis
functions, Gaussian function is the most widelyduseRBF networks. It is found to be capable of
making an accurate global mapping with refined llatztails. Compared with other radial basis
functions, Gaussian function has several advani&gess, the values of Gaussian function decrease
monotonically with the growth of distance from tbenter, which makes the Gaussian function
local in its response. It is more plausible frora thological point of view, because the response is
finite. Besides, both the position and shape ofgSi@m function is more flexible to adjust compared

with other radial basis functions [17].

Gaussian transfer function gives a response tlogisdoff rapidly as the distance between the
hidden unit and the input vector increases angnsgetrical about the radial axis hence the name
Radial Basis Function. The rate with which the cese drops is determined by the “spread” of the
hidden unit. The challenge of designing an RBF pétwlies in properly placing hidden layer
neurons and choosing an optimal value for the spoeastant such that the entire input space of

interest is covered with minimum overlap. Thesagiens are usually made empirically, rather than



through automatic training methods [7]. In [11gtlearned hypothesis is a function of the form

Showed in equation (4.1).

k
f@y=wo+ Y waKi(d(x,, X)) 4.1

u=1

Where eaclx, is an instance from X and where the kernel fumcKg(d (x,, X)) is defined so
that it decreases as the distaddg, X)) increases. Here k is a user provided constantspietifies
the number of kernel functions to be included. Emughf () is a global approximation to(x),
the contribution from each of th&,(d (x,, X)) terms is localized to a region nearby the printt is
common to choose each functidr(x,, X)) to be a Gaussian function centered at the pgintith

some variance?, as shown in equation (4.2)

L d?(x,,x)

K, (d(xy, x)) = e>u 4.2)

The functional form of Equation (1) can approximatey function with arbitrarily small error,
provided a sufficiently large numbkrof such Gaussian kernels and provided the widtbf each
kernel can be separately specified. The functiorergiby Equation (4.1) can be viewed as
describing a two layer network where the first lagé units computes the values of the various
Ku(d (x, X)) and where the second layer computes a linear catibn of these first-layer unit

values. An example radial basis function (RBF) reekwis illustrated in Figure (4.3).

Figure 4.3 A radial basis function network. Eacldden unit
produces an activation determined by a Gaussiarmtium
centered at some instangg Therefore, its activation will be
close to zero unless the input x is negr The output unit
produces a linear combination of the hidden untivations.
Although the network shown here has just one outpuitiple

output units can also be included.




Given a set of training examples of the target fiom¢ RBF networks are typically trained in a
two-stage process. First, the number k of hiddeits s determined and each hidden units
defined by choosing the valuesxgfandc?, that define its kernel functiorK,(d (%, X). Second, the
weightsw,, are trained to maximize the fit of the networkhe training data, using the global error

criterion given by Equation (4.3):

— 1 F 2
E=52 (f&)—fe» 4.3)

xeD

Because the kernel functions are held fixed dutligysecond stage, the linear weight valgs

can be trained very efficiently [11].

Several alternative methods have been proposechtmsing an appropriate number of hidden
units or, equivalently, kernel functions. One agtois to allocate a Gaussian kernel function for
each training examplé, f (%)), centering this Gaussian at the poinEach of these kernels may
be assigned the same widtf, Given this approach, the RBF network learns abajlo
approximation to the target function in which eachning exampldgXx, f (%)) can influence the
value off only in the neighborhood of. One advantage of this choice of kernel functienthat it
allows the RBF network to fit the training data etha That is, for any set ah training examples
the weightsa . . . wy, for combining the Gaussian kernel functions carséteso that fx;) = f (%)

for each training examplg, f (%)) [11].

A second approach is to choose a set of kerneltiimscthat is smaller than the number of
training examples. This approach can be much mifigeat than the first approach, especially
when the number of training examples is large. 3éteof kernel functions may be distributed with
centers spaced uniformly throughout the instaneeesgX. Alternatively, we may wish to distribute
the centers nonuniformly, especially if the insesxdhemselves are found to be distributed
nonuniformly over X. In this later case, we carkpiernel function centers by randomly selecting a

subset of the training instances, thereby samptiaginderlying distribution of instances [11].

To train Gaussian RBF network, four types of paitamseneed to be searched. They are the

number of hidden neurons, the positions of theezsndf all the hidden neurons, the widths of all



the hidden neurons and the weights that connedtittien neurons and the output neurons. There

are many algorithms being proposed for the traimih@aussian RBF networks and they can

summarized into a few categories according to tkelremes to get these four parameters. The
optimal weights between the hidden layer and thpuidayer can be obtained by many methods.
One is the regulation method which determines tlegghs by matrix computation, another is
gradient descent based method, least mean squane isf the mostly often used gradient descent
methods, and Linear Least Square method to olht@iroptimal weights between the hidden layer
and the output layer. There are several ways terane the center position and the width of the
hidden neurons. One way is to select the centerthefhidden neurons randomly from input
patterns. The width is set to a predefined valnesdme other methods, the center and width for
each hidden neuron are obtained using various eclogt methods, such as learning vector
quantization, the k-means clustering. The detertimnaof the number of hidden neurons is the
trickiest scheme of the training algorithm. Too #raaaumber of hidden neurons does not allow for
the reduction of the error to a satisfactory lowele while too high a number of hidden neurons
destroys the generalization ability and leadinght® problem of overfitting. However for most of
the supervised learning algorithms, the numberidddn neurons can only be obtained by trial and
error. Therefore, a sequential learning methodclvban adjust the number of neurons dynamically

during the training, is more appropriate [17].

One disadvantage of radial basis function is thatdost of classifying new instances can be
high. This is due to the fact that nearly all cotapion takes place at classification time rathanth
when the training examples are first encounterdeerdfore, techniques for efficiently indexing
training examples are a significant practical issueeducing the computation required at query

time [11]. Radial basis function performs well wheany training data are available [18].

Radial basis function networks provide a global ragpnation to the target function,
represented by a linear combination of many loeah&l functions. The value for any given kernel
function is non-negligible only when the input Xdanto the region defined by its particular cente
and width. Thus, the network can be viewed as aoiméinear combination of many local
approximations to the target function. One key atkvge to RBF networks is that they can be
trained much more efficiently than feedforward natkg trained with backpropagation follows

from the fact that the input layer and the outpyel of an RBF are trained separately [11].



4.3 General Regression Neural Network

GRNN is a memory-based network that provides eséismaf continues variables and
converges to the underlying (linear and nonlineagression surface. This GRNN is a one pass
learning algorithm with a highly parallel structuteéven with sparse data in a multidimensional
measurement space, the algorithm form can be use@ry regression problem in which an
assumption of linearity is not justified. The p&bhetwork form should find use in applications

such as learning the dynamics of a plant modepfediction or control [16].

Extensive efforts have been devoted to develomnogriques of linear time-invariant systems.
The linear identification is based on measuredtigma output values of the system, identification
for non linear systems is also based on measupad snd output values, but it is more difficult
[16].

If the variables to be estimated are future valdben the procedure is a predictor. If the
variable(s) to be estimated relate output variatdgaaput variables, then the procedure can be used
to model the process or system. Once the systenbéms modeled, a control function can be
defined. If the procedure is taught samples of trob function, it can estimate the entire control

function, and it becomes a controller [16].

The regression of a dependent variable, Y, on iedéent variable, X, is the computation of the
most probable value of Y for each value of X baseda finite number of possibly noisy
measurements of X and the associated values ofFhé values of X and Y are usually vectors. In
system identification, the dependent variable,sythe system output and independent variable, X,
is the system input. In order to implement systdemtification, it is usually necessary to assume
some functional form with unknown parameters he values of the parameters are chosen to make
the bet fit to the observed data. In the casenefali regression, for example, the output, is asdume
to be a linear function of the input, and the unkngarametersi , are linear coefficients. The

approach presented in [16] uses a method that ftdesm the necessity of assuming a specific



functional form. Rather, it allows the appropridtem to be expressed as a probability density
function (pdf) that is empirically determined frdahre observed data. Thus, the approach is not

limited to any particular form and requires no pkoowledge of the appropriate form. In [16] the
joint pdf will be estimated from examples using parametric estimators. The resulting regression
equation can be implemented in a parallel, neusthork-like structure. Since the parameters of
the structure are determined directly from exampddiser than iteratively, the structure “learn” and
can begin to generalize immediately. To the exthat the network is implemented in parallel
hardware, it also can estimate vales of Y for agwy malue of X in the short time determined by the

propagation time through four layers of a netwdr&][

4.3.1 General Regression

Assume that f(x,y) represents the known joint c@s probability density function of a vector
random variable, x, and a scalar random variahléey X be a particular measured value of the

random variable x. the conditional mean of y gi%e(also called the regression of y on X) is given

by:

X, ) dy
E[y|X] = —/———. (4.4)
Xy

When the density f(x,y) is not known, it must uBudle estimated from a sample of
observation of x, and y. [16] used the class ofstiant estimators, these estimators are a good
choice for estimation the probability density fuoot f, if it can be assumed that the underlying
density is continues and that the first partiaiwdgives of the function evaluated at any x arelsma
[16].



Defining the scalar function®

D} = (X - XH'(x - X) (4.5)

=1
Y(X) = : (4.6)

Where Y is a sample value, n is a number of sample obenga ¥ (X) is a desired

conditional mean, X =is a particular measured vifluendom variable x, ¥s a Sample value [16].

Last equation which involves summations over olsesus, it is directly applicable to
problems involving numerical data. The estimi{&) can be visualized as a weighted average of
all the observed values,;,Ywhere each observed value is weighted exponBntatording to its
Euclidean distance from X. when the smoothing patans is made large, the estimated density is
forced to be smooth and in the limit becomes aiwariite Gaussian with covariane& |. on the
other hand, a smaller value @fallows the estimated density to assume non-Gaustiapes, but
with the hazard that wild points may have to grmateffect on the estimate. Asbecomes very
large, Y(X) assumes the value of the sample mean of therobd Y, and ass goes to 0Y(X)
assumes the value of théagsociated with the observation closest to X. ricermediate values of
s, all values of Y are taken into account, but those correspondimptots closer to X are given

heavier weight [16].

When the underlying parent distribution is not kmovt is not possible to compute an optimum
o for a given number of observations n. it is therefnecessary to find on an empirical basis.
This can be done easily when the density estingabeing used in a regression equation because
there is a natural criterion that can be used Vatuating each value @f namely, the mean squared

error between ¥and the estimat& (X'). For this purpose, the estimate in last equatiwst be



modified so that the jth element in the summatisreliminated. Thus eacti(X') is based on
inference from all the observations except theaatbserved value at XThis procedure is used to
avoid artificial minimum error as — 0 that results when the estimated density is atbto fit the
observed data points. Overfitting of the data soalresent in the least-squares estimation ofrlinea
regression surfaces, but there it is not as sédwerause the linear regression equation has only p+1

degrees of freedom. If n>>p, the phenomenon offitirg is commonly ignored. Y antl can be

vector variables instead of scalars. In this caaeh component of the vector Y would be estimated
in the same way and from the same observationsy§Xexcept that Y is now augmented by

observations of each component [16].

4.3.2 Neural Network Implementation

The architecture of a basic GRNN model has fouersyinput, pattern, summation and output
layer as shown in figure (4.4). Each layer of pssoeg units is assigned with a specific
computational function when nonlinear regressiopagormed. The first layer of processing units
termed input neurons, are responsible for recemifanformation. There is a unique input neuron
for each predictor variable in the input veck¥rNo processing of data is conducted at the input
neurons. The input neurons then present the dathetsecond layer of processing units called
pattern neurons. A pattern neuron is used to coendimd process the data in a systematic fashion
such that the relationship between the input aedptioper response is “memorized.” Hence, the

number of pattern neurons is equal to the numbeagés in the training set.

A typical pattern neuron i obtains the data frora thput neurons and computes an output y

using the transfer function of:

-X-U)x-u) (4.7)
0 2°

Where X is the input vector of predictor variablesGRNN, U is the specific training vector

represented by pattern neuron i, ands the smoothing parameter. The outputs of thigem



neurons are then forwarded to the third layer a@icessing units, summation neurons, where the
outputs from all pattern neurons are augmentedhrieally, there are two types of summations,
simple arithmetic summations and weighted summatiperformed in the summation neurons. In
GRNN topology, there are separate processing tmitarry out the simple arithmetic summations
and the weighted summations. Equations (4.8) and) (@xpress the mathematical operations

performed by the ‘simple’ summation neuron andwWeighted’ summation neuron, respectively.
S=2i0 (4.8)
Sy = X Wib); (4.9)

The sums calculated by the summation neurons dseguently sent to the fourth layer of
processing unit, the output neuron. The output ereuhen performs the following division to

obtain the GRNN regression outpus shown in equation (4.10) below:
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Figure 4.4 The GRNN Block diagram

The advantages of GRNN relative to other nonlimegression technique are as follows [16]:



1. The network “learns” in one pass through the dathan generalize from examples as soon
as they are stored.

2. The estimate converges to the conditional meaness@n surfaces as more and more
examples are observed; yet, as indicated in th pbenit forms very reasonable regression
surfaces based on only a few samples.

3. The estimate is bounded by the minimum and maximfithe observations.

4. The estimate cannot converge to poor solutionsespanding to local minima of the error
criterion (as sometimes happens with iterative negpies).

5. A software simulation is easy to write and use.

6. The network can provide a mapping from one setashme points to another. If the
mapping is one to one, an inverse mapping canyelsilgenerated from the same sample
points.

7. The clustering version of GRNN limits the numbefsnodes and (optionally) provides a

mechanism for forgetting old data.

The main disadvantage of GRNN (without clustering/ptive to other techniques as that it
requires substantial computation to evaluate newtgoThere are several ways to overcome this
disadvantage. One is to use to clustering verstdrSRNN. Another is to take advantage of the
inherent parallel structure of this network andigiesemiconductor chips to do the computation.
The two in combination provide high throughput aapid adaptation [16].

GRNN suffers badly from the curse of dimensional®RNN cannot ignore irrelevant inputs
without major modifications to the basic algorithBo GRNN is not likely to be the top choice if

you have more than 5 or 6 nonredundant inputs [2].

To summarize, The GRNN is principally a normali®8F network for which a hidden unit is
centered at every training sample. The RBF unitstnref GRNN architecture are generally
characterized by the Gaussian kernels. The hidalger Ito output layer weights are just the target
values, so that the output is simply a weightedaye of the target values of training cases close t
the given input case. The GRNN is a universal agprator for smooth functions, so it should be

able to solve any smooth function approximatiorbpgm provided enough data are given.



Chapter 5

Design and Implementation



5.1 Introduction

In this chapter we will try to answer the followiggestions: What kind of data will be used to
train and test the neural network? What are thécaat neural network (ANN) algorithms will be
used in this study? What is the best neural nétaarhitecture? Which factors or features are most
important in pancreas so we can use them as irgita? dVhat is the output of the neural network?

What are the optimal learning parameters? Whdtesriethod is used to design the neural network?

5.2 Data Used For the Study

5.2.1 Types of Subjects

In this study three types of subjects will be use, first group is Type 2 Diabetic mellitus
(T2DM), Normal Glucose Tolerance (NGT), and Impdif&lucose Tolerance (IGT). And nextis a

brief description for each one of them.

1. Type 2 Diabetic Mellitus (T2DM):

Type 2 Diabetes was previously called Non—InsulepBndent Diabetes Mellitus (NIDDM).
Type 2 diabetes accounts for about 90% to 95%l afiajnosed cases of diabetes. It usually begins
as Insulin resistance, a disorder in which thescdth not use Insulin properly. As the need for
Insulin rises, the pancreas gradually loses itBtald produce it, then the patient is diagnosed a
T2DM [26]. In this study The T2DM group is consigli of 54 T2DM patients with a mean of
diabetic duration of 4.9 £ 5.6 years (yr). There 44 males and 10 females with diabetes. In this
study the mean age of this group is 55.9 + 8.(hgrthis group has body mass index (BMI) mean of
30.2 £5.3 (kg/m2).



2. Normal Glucose Tolerance (NGT):

This group is the normal peoples who don't havéelies or high Glucose level, their pancreas
is operating normally, and it produces Insulin &ldcagon in normal way as we have discussed
before. This group is consisting of 33 peoplestalae 27 males and 6 females. The average age of
this group is 56.2 9.1 and the average of BMI is 2946.2.

3. Impaired Glucose Tolerance (IGT):

Its some kind of Pre-diabetes, People with preetiedhave higher than normal blood Glucose
levels, but that are not high enough to diagnoabeates. People with pre-diabetes have normal to
high levels of Insulin, which their body cannot usificiently (called Insulin resistance). If not
treated, pre-diabetes will eventually turn intodyp diabetes [26]. This group is consisting of 15
peoples; there are 12 males and 3 females. The aggaof this group is 55.3 = 6.8 and this group
has body mass index (BMI) mean of 35.0 £ 5.3.

Table 5.1 Summary of the characteristics of the M2NGT, and IGT group

CHARACTERISTICS T2DM NGT IGT
No. (Male / Female) 54 (44/10) | 33 (27/6) | 15 (12/3)
Age (yr) 55.0+8.0 [56.2+9.1 [ 55.3 +6.8
BMI (kg/m2) 30.2+53(29.6+6.2 | 35.0+5.3
Fasting PG (mmol/liter) 11.7+40| 59+06 | 6.2+0.6

Fasting plasma Insulin (pmol/liter) 48 +5.0 40+4.0 | 78+15.0
Fasting plasma C peptide (pmol/liter) | 778 +48 | 667 £42 | 999 + 134
Fasting plasma Glucagon (pmol/liter) | 13.0+0.8 | 84+09 |11.2+1.6
Fasting plasma GIP (pmol/liter) 127+15| 86+0.7 | 9.8+1.2
Fasting plasma GLP-1 (pmol/liter) 66+05 | 49+04 | 4904

Summary of the characteristics of the T2DM, NGTd & T groups is given in table, number
of subjects, gender, age, BMI, the mean of fasBhgcose, Insulin, C-peptide, Glucagon, GIP, and
GLP-1 are shown in table (5.1).



The T2DM group was recruited from the diabetesalnic, whereas the groups with NGT or
IGT classified after an oral Glucose tolerance tstording to the World Health Organization
(WHO) criteria of 1985, responded to an advertisgnie a local newspaper None had a history of
bowel disease, alcohol abuse, or, for the NGT/I@Bjexts, diabetes among first degree relatives.
According to the patients’ medical records, theyl mrmal Serum Creatinine, normal hepatic
function, and no Albuminuria. The study was apptbbg the ethical committee for Copenhagen
and Frederiksberg Municipalities and was condueecbrding to the principles of the Helsinki

Declaration [1].

5.2.2 Procedure

After 3 days of discontinued antidiabetic medicatemd an overnight fast for 10 hours, the
subjects consumed a mixed breakfast meal contazZib@ kJ (41.8% fat, 40.7% carbohydrate, and
17.5% protein; fiber content, 6.7 g). The meal s&wed with coffee or tea and ingested within 10—
15 minutes. Blood was sampled from a needle irreafon vein before the start and during the next
4 hours and was distributed into fluoride tubes dorlysis of Plasma Glucose (PG) and into
EDTA/Aprotinin tubes for analysis of plasma coneations of GLP-1, GIP, Glucagon, Insulin, and
C-peptide [1].

In this study, the data were taken subject to .tifftee measurements were taken initially at
time = 0. Time = 0 is the fasting time which hasieneasured before eating the meal. After that
the measures have been taken of 10 minutes peltié@ minutes, then a period of 30 minutes to
240 minutes (4 hours).

The mean of each attributes from fasting time (t#@¢to time= 240 for T2DM, NGT, and IGT
subjects are shown in tables (5.2), (5.3), and) (Bedpectively. As seen in these tables that the
levels of the hormones and the Glucose are stéoté@ttrease after 20minutes. It can be justified
that the meal was finished after 10 to 15 mintsalbsubjects. So it’s logically that these lewsid
be increased because the Glucose will be increaftedthe meal. But these levels have different
values from one group to another. For example,téts how Insulin was changed from time = 20
to time = 30 for all groups, Insulin for T2DM atte = 20 was 88 and increased t0130 at time =30.
For NGT, Insulin was 170 at time = 20 and increase®30 at time = 30. At last, IGT Insulin was



202.03 and increased to 322.82. We can notice thisrexample that the significant differences of
the Insulin levels among the three groups of sibjend it can be justified by the function of the

pancreas, if it was operating normally or not.

Also these levels at most times dropped off aftero6 90 minutes, it can be justified by the
secreting of the Insulin at high levels will contetill 90 minutes then started to drop off, of k=&
the amount of insulin secreted into blood will ldject to levels of glucose for normal peoples. So
we expect from the neural network to learn thisgesyswell unless the nature of the data which

have been experimented for each patient have somahle noise.

In this study, the input vector of the neural netwior both RBF and GRNN is representing a
single patient or subject and the elements of ¥ktor will represent the hormones which have
been stated before and also the output elementvidhitie Glucose level for single patient. So what
we are going to do in this study is to use the alenetwork models to draw a function that will find
the relations between the input vector and thewuipctor without a prior knowledge about this

function.

Table 5.2 sample of T2DM group with average vahfabe input and output at all times

TIMES | GLUCAGON | INSULIN [C-PEPTIDE | GIP |GLP-1 | GLUCOSE
T=0 13.00 48 781 1281  6.63 11.7
T=10 14.80 72 906 1920 7.29 11.58
T=20 18.00 88 968 48.11  9.41 12.20
T=30 22.45 130 1103 70.718 12.6 12.90
T=40 22.45 152 1228 78.97 13.7 13.70
T=50 21 163 1283 79.6f 141 14.50
T=60 19.86 176 1378 81.99 13.9 14.99
T=90 15.89 185 1503 72.18 11.5 14.98
T=120 14.70 165 1503 59.70 10.9 14.59
T=150 13.13 127 1378 54.15 10.0 13.70
T=180 11.94 103 1315 47.34 9.23 13.30
T=210 10.53 84 1256 38.26 8.2] 12.50
T=240 10.5 80 1195 30.72  8.4¢ 12.00




Table 5.3 sample of NGT group with average valdgheinput and output at all times

TIMES | GLUCAGON | INSULIN [C-PEPT | GIP GLP-1 GLUCOSE
T=0 8.41 40 667 8.6]] 4.90 5.91
T=10 11.0 70 792 1511 5.67 5.91
T=20 13.0 170 1230 68.6[1 10.44 6.55
T=30 13.51 230 1730 91.74 13.80 7.07
T=40 12.51 235 2046 94.34 15.66 7.47
T=50 12.0 270 2290 96.94 16.10 7.47
T=60 10.31 270 2375 94.37 17.18 7.06
T=90 9.11 184 2250 89.48 17.44 6.24

T=120 9.51 130 1812 81.99 15.8 5.83

T=150 9.0 80 1562 65.8L 13.38 5.61

T=180 8.51 60 1300 52.08 10.88 5.44

T=210 8.01 40 1060 36.55 9.34 5.42

T=240 8.0 35 1000 27.6p 8.24 5.41

Table 5.4 sample of IGT group with average valdeb®@input and output at all times.

TIMES | GLUCAGON | INSULIN [C-PEPTIDE | GIP |GLP-1 | GLUCOSE
T=0 11.20 78 990 9.8Q 4.92 6.27
T=10 14.30 131.54 1099 1716 6.8 6.28
T=20 17.60 202.03 1220 53.39 115 6.75
T=30 17.90 322.82 1721 82.15 135 7.16
T=40 17.60 383.50 1834 86.33 13.4 7.40
T=50 15.80 378.67 2046 84.97 14. 7.47
T=60 14.90 412.66 2243 93.42 14, 7.4
T=90 12.40 401.61 2363 85.22 14. 7.30

T=120 11.70 289.03 2241 71.28 13.4 6.7

T=150 11.30 195.73 2050 60.23 11.5 6.4

T=180 11.40 166.13 1721 52.67 9.9 6.22

T=210 11.00 100.10 1221 35.82 9.8] 5.90

T=240 11.00 80 1184 27593  8.2% 5.80
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Figure 5.1 the representation of the Insulin, ctigep GIP, GLP-1, Glucagon, and Glucose average$2OM, NGT,

and IGT groups at all times.




In figures (5.1), the x-axis represents the groapd the times, from numbers 1-13 which
represent T2DM (1 represents T2DM at time = 0,[®2eagents T2DM at time =10, and so on till 13
which represents T2DM at time = 240). In x-axesnhars from 14 to 27 are representing NGT
group from time = 0 to time = 240. Finally, numbéem 28 to 41 are representing IGT group from
time = 0 to time = 240. The y-axis is representimg levels of the Insulin, c-peptide, GIP, GLP-1,
Glucagon, and Glucose.

As shown in figure (5.7), the shape of the curvelrdulin, C-peptide, GIP, and GLP-1
functions are almost similar for all subjects T2DNGT, and IGT. And for Glucagon and Glucose
they are almost similar too. This can be justifogdtheir functions, GIP and GLP-1 are stimulating
the Insulin levels secreted by pancreas, and dgeejs secreted in the blood by pancreas almost in
the same rate of Insulin. While the main functiéth@ hormone Glucagon is to increase the levels

of Glucose in the blood to maintain the normal lefeGlucose.

The level of Insulin of T2DM is below the level fsulin of NGT and IGT even the Glucose
level of the T2DM is so high. And this is the magason for diabetes in this group. And the levels
of Insulin in IGT are too high compared to NGT af2DM. As seen from the figure (5.1), the
levels of c-peptide are so high compared to otladwes and it will give us a strong motivation to
make normalization to the c-peptide.

5.3 Methods: MATLAB7

The simulations were released by using MATLAB 7uNg Network ToolboxMATLAB is a
high-performance language for technical computibgntegrates computation, visualization, and
programming in an easy-to-use environment wherblenos and solutions are expressed in familiar
mathematical notatioMATLAB is an interactive system whose basic datrent is an array that
does not require dimensioning. This allows solvimgny technical computing problems, especially
those with matrix and vector formulations, in acfran of the time it would take to write a program
in a scalar noninteractive language such as C wrafo[28].

The name MATLAB stands for matrix laboratory. MATBAvas originally written to provide
easy access to matrix softwalATLAB has evolved over a period of years with imfrom many

users. MATLAB is the tool of choice for high-prodivity research, development, and analysis.



MATLAB features a family of add-on application-sgfec solutions called toolboxes. Very
important to most users of MATLAB, toolboxes alltearning and applying specialized technology
[28].

5.4 Design of the neural Network

5.4.1 Network Architecture

RBFNN Usually contains three layers: the input taylee hidden layer and the output layer. For
GRNN, The architecture of a basic GRNN model has fayers: input, pattern, summation and
output layer. For both RBFNN and GRNN, the in@yter doesn’t process it just passes the input to
the next layer, the hidden layer for RBFNN or tlad¢tgrn layer for GRNN.

1. The Input and Output Nodes:

Neural network learning provides a robust approtclapproximating real-valued, discrete-
valued, and vector-valued target functions. An#iceural networks are among the most effective
learning methods currently known. The target fuorctio be learned is defined over instances that
can be described by a vector of predefined featditesse input attributes may be highly correlated
or independent of one another. Input values caanyereal values [11]. So after studying how the
pancreas works, input must be described as thesfimed features of the pancreas, Insulin, c-
peptide, Glucagon, and GIP, and GLP1 will be cagrgd as input nodes to the neural network as
illustrated in figure (5.2).

C-peptide(t)

Y(t)

Glucagon(t) ) Regulated Glucose

Figure 5.2 neural network architecture; with 5 input nodes and one output node and one hidden layer



2. The Hidden Layer for RBF:

The RBF neural network architecture consideredterapplication was a single hidden layer
with Gaussian RBF. As seen in figure (5.3) the aeunodel of radial basis function, receives input
vectors from input layer then it calculates thaatise between this input vector with weight vector,

then a dot product is done between neuron biagtendesult of the distance to generate a vector

will be used in Gaussian function and the outpyias linear layer.

Input Radial Basis Layer Linear Layer
N N ™
ster | IW11
P dist |||, ) 5% L“:"\ . Sixl
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Syl ﬂ- 5241 74
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Figure 5.3 architecturesf RBF

Where:

R: number of elements in input vector.

P: is a single vector that will be fed to the hidd&yer from input layer.

W: weight vector.

|| dist|| : Euclidian distance between its weight vectoaid the input vector P.
bl: is bias.

X: is the dot product betwed|dist|| and bias.

n: is the result from dot product.

|ﬂ .. is the radial basis function, Gaussian.

a: is the output from this neuron to next layerchihs the output layer



3. The Number of Neurons in Hidden Layer for RBF:

We have discussed in the previous chapter the metimowhich the number of neuron must be
decided, so there are two methods : first one chtmse the number of neurons equal to the number
of input vectors exist in the training data, supptiee number of neurons in neural network is Q, in
this case, Q=P. This function can produce a netwatk zero error on training vectors. The
drawback to this method is that it produces a ndtwath as many hidden neurons as there are
input vectors. For this reason, it does not reaurracceptable solution when many input vectors are

needed to properly define a network, as is typjdaié case.

The second method is to choose number of neurgaghan the number of input vectors. This
method also creates a radial basis network oneonatra time, but we may specify an error goal,
so neuron will be added to the network until thensgquared error falls beneath the error goal or
maximum number of neurons has been reache@ach iteration, the input vector that result in
lowering the network error the most is used to tereaneuron. The error of the new network is
checked, and if low enough learning is finishech&dtvise the next neuron is added. This procedure
Is repeated until the error goal is met, or the imaxn number of neurons is reached. In this study,

the second method will be used.

Table 5.5 number of neurons and input vectors &hdrRBF network in this study

NEURAL NETWORK | GOAL INPUT EPOCHS
VECTORS | OR NEURON
NGT t="* 0.002 33 25
T2DM t=* 0.002 54 25
IGTt="* 0.002 15 <15
NGT all times 0.002 429 400
T2DM all times 0.002 702 700
IGT all times 0.002 195 175
NGT and T2DM 0.002 1131 1125
Pancreas 0.002 1326 1300
Pancreas testing 0.002 1117 1100




Note: t = * means at each time from time = 0, 10, 20, 40, 50, 60, 90, 120, 150, 180, 210, and
time = 240. As shown from the table (5.5) that nembf neurons at all networks was less than

number of input vectors, and the error goal wasstirae in all networks 0.002.

4. Choosing the Spread Parameter

Choosing the spread parameter of the radial basibns determines the width of an area in
the input space, to which each basis function nedpoThe spread parameters are often known as
the smoothing parameters. The only condition weehavmeet is to make sure that SPREAD is
large enough so that the active input regions efrturons overlap enough so that several neurons
always have fairly large outputs at any given mame&his makes the network function smoother
and results in better generalization for new inpettors occurring between input vectors used in
the design. (However, SPREAD should not be so ldrgeeach neuron is effectively responding in

the same, large, area of the input space.)

Table 5.6 spread evaluation (sum squared error)(85gerformance) in each RBF network,

Where spread = 1, spread = 0.5 and spread 10@eamgaced

TIME | T2DM PERFORMANCE | IGT PERFORMANCE NGT PERFORMANCE
spread 0.5 | spread 1 Spread spread 1 spread 0.5
100
T=0 0.00698372 0.0077404 0.646561 0.00538381 3528B6
T=10 | 0.00700856 0.005500Q6 0.646561 0.0044842 0538
T=20 | 0.0040293| 0.00409547 0.457039 0.0193842 70@A9
T=30 | 0.0129406 | 0.0100434 0.393806 0.00415088 4@.1®7
T=40 | 0.00250796 0.0026757%6 0.355645 0.005471706090.768
T=50 | 0.00895158 0.00535531 0.371396 0.004545280743
T=60 | 0.006495 0.00768203 0.331815 0.0156191  BREES
T=90 | 0.00454809 0.00449238 0.26509 0.00641297 80846
T=120| 0.00193609 0.00862235 0.435124 0.0107673006F996
T=150| 0.0129238| 0.00985514 0.44144 0.01164 06033
T=180| 0.0104064| 0.00681251 0.62687 0.0071359 3068
T=210| 0.0079573| 0.00466609 0.636005 0.0114052 100668
T=240| 0.00696427 0.00803166 0.674025 0.001740560300833




Spread = 1 was chosen in all times for T2DM and Ndcause performance of the network
was better. The sum squared error (SSE) with né&svasing the spread 1 was less than networks
using spread 0.5 in the most of networks except &M at time =0, 10, 40, 50, 90, 120, 150, 210.
But the differences in performance error was scomahimost the same.

For NGT, all networks at all time, the performamndespread 1 was better except at time = 120.
For IGT the spread 1 and 0.5 are giving bad perdoce comparing with networks using spread
100. So spread =100 was chosen in IGT networkB tin@s because it's the best performance. Of
course much more spreads were tried, but the bex thie spreads which are shown in the table
(5.6) and table (5.7). Choosing the spreads wasskng trial and error.

Table 5.7 evaluation of spreads 1 and 0.5 foRBIF networks of NGT, IGT, and T2DM at all times

subject to SSE performance

RBF ALL TIMES PERFORMANCE | PERFORMANCE
SPREAD =0.5 SPREAD =1
NGT 0.0132038 0.00215727
T2DM 0.0929451 0.192126
IGT 0.00698776 0.00963103
NGT+T2DM 0.23613 0.2643
Pancreas 0.2866 0.272524
Pancreas-test 0.257464

In the table (5.7), the spread = 1 of NGT all timess better performance than a network with
spread=0.5. And for T2DM spread = 0.5 was betten pread = 1. For IGT, the network using the
spread = 0.5 was the best performance. For pascilee network using spread=1 was better than
network using spread = 0.5. For GRNN, the hiddgerlas similar to the radial basis network, the

optimum spread value was found by trial- and —ewand it was spread of value 0.1.

5. The architecture for the GRNN

The architecture for the GRNN is shown below irufigy (5.4). It is similar to the radial basis
network, but has a slightly different second layer.
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Figure 5.4 The architecture for the GRNN

Here the nprod is a norm product produces numbeteshents in vector n2. Each element is
the dot product of a row of Weight (which W is settarget T) and the input vector al (output of

the pattern layer), all normalized by the sum efélements of al [4].

5.4 2Performance€riteria

This study is interested in comparing the perforceanf two learning algorithms RBF and
GRNN. What is an appropriate test for compariragrieng algorithms? And how can we determine
whether an observed difference between the algositls statistically significant?

For training, After learning each network by RBFEI&BRNN for the same learning data set, we
simulated or tested the same training set, thesub&racted the target value from the output value
for each vector, and this represents the erron@hetwork, then we compared the RBF and GRNN
networks by taking the percentage of the samplashwbassed the test. For example, suppose that
RBF has performance of 90%, this means that 90 #teofraining data set have passed the test, and

the error was below 0.002. And this is the trainpegformance.

For testing, we have trained some samples of ddatarken we have made the simulation on
different data rather than the trained data. Buihfthe same data set of this study, and we made the
same comparison between target and output. Andowedfthe error. And compared GRNN and

RBF based on this error. And this is the tespiagormance.



5.4.3 Testing

From data set of pancreas which consists of 132&k& we have chosen 1117 for training set,
and the rest for testing, we applied both RBF arRN@ on these data to evaluate their
performance, For RBF, the network consisted @fOldeurons and a spread of 1, and goal was
0.002. And for GRNN, a spread of 0.1 was chosethf@mnetwork.

5.4.4 Design the Neural Networks

To summarize:

* RBF neural network and GRNN will be applied to the@up of subjects of NGT,
T2DM, and IGT.

» Standard RBF algorithm was used with Gaussian ataiv function and the number of
neurons was chosen automatically by MATLAB functfaewrb” with no need for trial

and error strategy as we have done for spread.

* Input nodes are: Insulin, Glucagon, C-peptide, Gl GLP-1. And output node is

Glucose.

* In our study we have many models, the reason fplyaqg the neural network to many
data sets with different noise, number of vecttyse of subjects, time, and nature. We
have constructed neural network for each time ef4thours we have explained before.
we have a network for NGT at t=0, and a network N@3T at time = 10,..., and a
network NGT at time= 240, means that we have 1®&ors for NGT, 13 networks for
T2DM, and 13 networks for IGT.



Chapter 6

RESULTS



The training and simulation were released by u$TLAB 7, Neural Network Toolbox.
Two different neural network structures, which asslial basis function (RBF) and general
regression neural network (GRNN) were applied tDWV2patients, NGT peoples, and IGT persons.
There were 54 T2DM patients, 33 NGT persons, anddb persons in this study. After an
overnight fast for 10 hours, the subjects consuaetxed breakfast meal, and the data were taken
from the subjects: Insulin, C-peptide, GlucagonP GELP-1, and Glucose. these data were taken
from the subjects at time = 0 which is the fastmg, then every 10 minutes period to an hour, and

30 minutes period to 4 hours.
In this study, both RBF neural network and GRNNevapplied to:
1. T2DM fromt=0tot = 240.
2. NGT from t =0 to t =240.
3. IGT fromt=0tot=240.
4. T2DM all times together.
5. NGT all times together.
6. IGT all times together.
7. NGT and T2DM together at all times.
8. NGT, T2DM, and IGT together at all times.
9. NGT, T2DM, and IGT data set was divided into thagnset and test set.

The number of neurons was different from neuralvoet to another, as discussed in the
previous chapter. The error goal for the radiaidosmction networks was 0.002. For GRNN and
RBF, the optimum spread values were found by &ral-error and used for training and test data.
For GRNN and RBF, spread value of 0.1 and 1 resmdgt For IGT all times RBF network, the
spread was 0.5 and a spread of 100 for IGT fror0 te=t-240.



Table 6.1 performance of GRNN and RBF for NGT, I@mgd T2DM at each time

TIMES [ T2DM (%) | NGT (%) IGT (%)
RBF| GRNN | RBF | GRNN | RBF | GRNN

T=0 |93 |60 88 | 80 84 | 100

T=10 |97 |67 90 | 82 60 | 77

T=20 |96 65 87 70 50 65
T=30 |96 58 90 80 43 60

T=40 |97 65 100 | 75 47 62
T=50 |90 63 97 76 40 66
T=60 |95 64 85 74 44 59
T=90 |98 75 90 78 50 66
T=120 | 96 80 100 | 80 55 68
T=150 | 98 56 100 77 65 72
T=180 | 97 75 95 84 80 84
T=210 | 98 71 90 80 66 70
T=240 | 97 78 90 85 63 65

The results of this study are summarized as follows

e As shown in the table (6.1), for T2DM the perforroamf RBF was better than GRNN at all
times, RBF was slightly better than GRNN for NGhddor IGT, RBF was worse than
GRNN at all times, RBF was worse for IGT and slightetter than GRNN for NGT
because RBF neural network is not performing weiem there are no enough data, thus
Radial basis function performs well when many trajndata are available. GRNN
performance was not a good choice in T2DM. It malgbeause one of many reasons, but
for sure the main reason is the nature of data2@M. GRNN is suffering badly from the
curse of dimensionality. GRNN cannot ignore irr@etvinputs without major modifications
to the basic algorithm. So GRNN is not likely tothe top choice if we have more than 5 or

6 nonredundant inputs.



Table 6.2 performance of RBF and GRNN for NGT, 1@m¢d T2DM at all times

ALL TIMES RBF | GRNN| INPUT
T2DM 80% | 50% 702
NGT 99 70 429
IGT 97 85 195
NGT + T2DM 88.1%| 63% 1131
NGT + T2DM + IGT| 90% | 66% 1326

* In the table (6.2), RBF performance for NGT, T2DRHAGT at all times was above 88.1,
this is can be justified because there are mamyitigadata are available to train the neural
network. Again GRNN was not performing well in T2Dfvt the same reason; maybe there
are more than 6 nonredundant inputs.

 For GRNN IGT at all times the performance was tkstl= 85. It can be justified, if we
looked again to the input data for IGT, see figi‘d). We can see that the maximum value

of insulin was so high at most times in IGT complat@ other values such as GIP, GLP-1,
Glucagon, and Glucose.
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Figure 6.1 Insulin level at all time for T2DM, NGand IGT.

We justify that GRNN performed so well in IGT fdrelse reasons:
1. Choosing an optimal spreafl@1 made the performance optimal (See table 6.3).
2. Normalized product in layer 2 of GRNN is normalieat so it gave better results
than RBF. When insulin was so high, the normalaratvas needed.
3. GRNN is performing better than RBF when there i¢ n@any training set as
discussed in chapter 3.



4. There was no nonredundancy vector in IGT trainiatad

Table 6.3 comparing different spread performandé&adf all times for GRNN.

GRNN SPREAD=0.1] SPREAD=1 SPREAD=2 SPREAD ¥3 SPRE&AD

IGT all times | 100% 98% 90% 60% 10%

As shown in table (5.3) above, we notice that wiverchose a spread of 0.1, it gave us

performance of 100%, and every time the spreadlgegsr, the performance gets down.

As shown in table (6.4), the performance of the RBIS better than GRNN in training, 84%
for RBF and 72% for GRNN. But when the testingaspared, we can see that the GRNN
is better than RBF in testing, RBFNN performed adl¥ 45%, and GRNN performed well.

Table 6.4 Performance of the testing data for RB& GRNN.

TEST DATA TRAINING TESTING SPREAD
RBFNN 84% 45% 1
GRNN 72% 80% 0.1

As can be seen in figures (6.2) and (6.3), the RBFT2DM at all times and GRNN for
T2DM all times respectively, the following figurefiow the response of neural network.
Inputs with targets have been trained to approxantia function, and then the targets with
output vectors were plotted, The target values ¢iaire the neural network response) are
shown by circles, the output measurements are diyetine ‘+' symbols, clearly for RBF
there is still an error (when the ‘+' symbols am@ m the center of the circle) but is not
significant as in GRNN. Since the given data foDMis noisy. We justified that GRNN
was performing badly by the nature of data itsgifhosing optimal spread by trial and error,
or existing of more than 6 nonredundancy vectofB2DM as [2].
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Figure 6.2 training T2DM by RBF, while O is thedat and + is the output.

X-axis is the subjects and y-axis is the valuglotose from 8 to 16.
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Figure 6.3 training T2DM by GRNN, while O is thedat and + is the output.

X-axis is the subjects and y-axis is the valuelo€gse from 8 to 16.



In the following figures (6.4) and (6.5), the RB3¥ NGT and T2DM at all time and GRNN
for NGT and T2DM at all times, respectively. Afténe training has been done to
approximate the function, we have plotted theabwgctors by ‘O’ and the response of the
network by ‘+’, the x-axis represents only 600 jeats of 720 subjects, y-axis represents
the Glucose (output) from levels 8 to 10, also ntyeae can notice that RBF has better

results than GRNN. (errors are noticeable by natiph the ‘+’ in the center of the ‘O’).
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Figure 6.4 training NGT and T2DM by RBF, while Qe target and + is the output.
X-axis is the subjects and y-axis is the valuelo€gse from 8 to 10.
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Figure 6.5 training NGT and T2DM by GRNN, while ©the target and + is the output.
X-axis is the subjects and y-axis is the valuelo€gse from 8 to 10.



Finally, figures (6.6) and (6.7) plotted the taggahd output vectors for pancreas RBF and
pancreas GRNN. X-axis for only 600 subjects ancig-an figure (5.6) represents Glucose

levels.
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Figure 6.6 training Pancreas by RBF, while O isttrget and + is the output.
X-axis is the subjects and y-axis is the valuglotose from 8 to 12.
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Figure 6.7 training Pancreas by GRNN, while O &strget and + is the output.
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Table 6.5 converging to error goal according teadrand number of neurons

NEURONS| PERFORMANCE | PERFORMANCE NEURONS PERFORMANCH PERFORMANCE
SPREAD =1 SPREAD =0.5 SPREAD =1 SPREAD =0.5
1125 0.294827 0.293214 650 4.0657 61.4987
1100 0.299909 0.323221 600 6.71092 109.912
1075 0.342415 0.377774 550 9.05474 229.48
1050 0.45427 0.421479 500 13.4859 424.015
1025 0.46734 0.509057 400 55.9734 672.987
1000 0.517112 0.679457 300 262.504 1140.77
950 0.671112 1.07487 200 1365.25 2128.56
900 0.798151 1.5419 100 3532.73 7208.07
850 0.935965 2.36178 75 5108.76 8582.32
800 1.35625 8.30855 50 7841.35 10327.6
750 1.80475 23.3575 25 11351.3 13306.2
700 3.11798 38.9404

* In the table (6.5) shows how the radial basis flwmctonverges to the goal, when the RBF
network reached 25 neurons and spread of 1, tHerpence was 11351.3. And for the
RBF network of spread 0.5, the performance was @23GRBF network of 100 neurons and
a spread of 1, the performance was 3532.73, and REWwork of spread = 0.5, the
performance was 7208.07. RBF network of 500 neuisord a spread of 1, the performance
was 13.4859, for RBF network of spread = 0.5 it w24.015. We can notice that the RBF
network of spread = 1 has improved significantlythe first 550 neurons then it started to
converge slowly, and the RBF network of spread5=ddarted to fit badly then it improved
after 800 neurons, finally, the RBF network of sjtd converged to error 0.294827, while
the RBF network of spread = 0.5 showed better sitvidth error 0.293214 both networks

consisted of 1125 neurons.
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Figure 6.8 convergence curve of a RBF network f&GTNand T2DM consisted of 1125 neurons and a Spyé@db
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Figure 6.9 convergence curve of a RBF network f&GTNand T2DM consisted of 1125 neurons and a Spréad



Convergence curves of both networks are shown gards (6.8) and (6.9), From the
convergence curve in figures (6.8) and (6.9) we dedluce that the fit of RBF network of
spread = 0.5 is quite bad compared to the RBF nm&tafospread = 1 in the beginning. Then
at the end they converged to approximately the g@rfermance

Two things are apparent now. First, with all németwork problems we face, the question
of determining the reasonable, if not optimwmge of the network (to make the size of the
network bigger, increase the number of iteratiomsirons, or epochs) is so important. This
brings in also more network parameters, such asotitenal smoothing parameter or

spread. The other thing, which could be done, isintprove the training algorithm
performance or even change the algorithm.



Number of input vectors of each network will be ttame as number of subjects in
each group NGT, T2DM, and IGT. Input vectors weBe 34, and 15 respectively. Then
we made a network for all times to each group, re¢hat we have a network for NGT
at all times, T2DM at all times, and IGT at all &8) the number of input vectors were
429, 702, and 195 respectively. Also we made amatb®vork for NGT and T2DM at
all times, the number of input vectors was 112%aly, we made a network for all
subjects at all times, we will call it Pancrease Ttumber of input vectors was 1326. See
table (4.7).

Number of neurons was different to each RBF netweoekhave constructed, but the
number of neurons was less than the number of impctiors for every network. The
number of neurons for NGT at any time, T2DM at &me, IGT at any time, NGT all
times, T2DM all times , IGT all times, NGT and T2DNMPancreas, and Pancreas testing
were 25, 25, <15, 400, 700, 175, 1125, 1300, a0d tdspectively.

Spread was 0.1 for GRNN and for RBF was 1 exceptGd at any times, spread of

100 was chosen, and for IGT all times, a spredd®fvas chosen.

Sum-squared error (SSE) was chosen as error penfmgnalgorithm. Goal error Of
0.002 was chosen for RBF.



Chapter 7

Conclusion and Future Work



7.1 Conclusion

Two different neural network structures, which aaglial basis function (RBF) and general
regression neural network (GRNN) were applied talics data for three different groups, 54 type
2 diabetes patients, 33 normal glucose tolerancgops, and 15 peoples having impaired glucose
tolerance. This study indicates the good functippreximation capabilities of RBF neural network
and general regression neural networks. When congp&BF and GRNN models, we find that
RBF is better than GRNN in training and GRNN watidyan testing.

Recall that the performance of RBF was better thenGRNN for all spread values tried but in
some cases such as IGT networks, GRNN was be#terRBF, we relate these results to the nature
of data we have, and choosing the optimal spréedptly technique was used to choose spread
values in this study was trial-and error. Althoubke RBF neural networks training algorithm gave
the best result for the training data, the mostartgnt result should be considered with the test
data. The best result achieved on the test déte isne using the GRNN structure (85 %).

In this study RBF performed so badly in testing da¢a, this is due to the fact that nearly all
computation takes place at classification time eattihan when the training examples are first
encountered. Therefore, techniques for efficiemtigexing training examples are a significant
practical issue in reducing the computation requaequery time [11].

In this study, it was apparent that GRNN and RB& &ast training, modeling of non-linear
functions, good function approximators, and goodgomance in noisy environments given enough
data. Although GRNN was faster than RBF, GRNN weielo than RBF in testing data (data for
testing were taken from the data set itself butugled from the training), and RBF was better than
GRNN in training when there was enough data avi@laBRNN was performing badly in T2DM
networks, we justified that by existing more tham6nredundant inputs [2]. The limitation of the
RBF neural network is that it is more sensitivelimensionality, has greater difficulties when there
is not enough training data, and a new trainingtierneural network is needed to approximate new
data and this is neither very economic nor pracpoacedure.



Unfortunately, we still have some limitations an@dwbacks in this study, we determined the
optimal parameters (spread and centers) more eor bgstrial-and-error. A more sophisticated
method to determine the optimal parameter valuedesrable and it improves the performance
considerably. A potential limitation of this stut/that training and testing were performed with a
single data set and that there were no resultepted based on the external/similar independent
dataset.

We conclude that the result is quite satisfactorg @ reflects the nature of both algorithms,
RBF and GRNN. Results showed the advantages aadwdistages of both algorithms. Although
results would still require improvements by adagptiautomatic techniques choosing optimal
parameters, applying the neural network modelsxternal data set, and filtering the data for

redundancy, clustered samples and outliers.

7.2 Recommendations for Future work

The main drawback we have faced in our designeéggtmeralization problem of RBF, and we
need to be improved for GRNN. So, in the future,ase going to upgrade our model by applying
amendments to the standard RBF.

Many proposals have been made to solve the probleoverfitting or generalization. My
recommendation is to make the normalization aratiment of data in three steps, first step, before
the training by using pre-treatment of data, suslelaninating the outliers, or to test the standard
deviation before the training, second step, usimgnalized RBF, which will use the normalization
in hidden layer. And at last, after testing, todfian algorithm to remove the data which has
significant or even small errors and to make nening set and to repeat the steps 1 and 2 again,
and to test the data. So in this case we have fairtg algorithms, means that when new data
come and needed to be tested or generalized, wek tnegse method of trial and error or other

methods to check which algorithm must be usedHerdata to be generalized.
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