I 3'
o & 4
8, _—
*, s
DL gra M

Variability modelling in divide and conquer method

By
Ahmad Fouaad AL-Jassim AL-Sultan

Supervisor
Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfilment of the
Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies
Philadelphia University

2014

Lalald dxala

a5 3 sad
sl sall s LSl il (e gen g i LAl Aol (o sdl ¢ GUalull audall 3158 aeal U
Lealhs die Al BV o cilindl

gl
;é,utm

Philadelphia University
Authorization Form

| am, Ahmad Fouaad Aljassim Alsultan, authorize Philadelphia University to supply
copies of my thesis to libraries or establishments or individuals upon request.

Signature:

Date:

Variability modelling in divide and conquer method

By
Ahmad Fouaad AL-Jassim AL-Sultan

Supervisor
Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfilment of the
Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies
Philadelphia University

2014

Successfully defended and approved on

Examination Committee Signature

Dr. , Chairman.

Academic Rank:

Dr. , Member.
Academic Rank:

Dr. , Member.
Academic Rank:

Dr. , External Member.

Academic Rank:

Dedication

First of all | thank Allah the almighty for giving me the strength and knowledge to finish
this work, | dedicate this work to my family my father, My mother, My brothers, My sisters
and my uncles, also to my friends, they’ve been there for me whenever | needed.

Ahmad fouaad alsultan

2014

\

Acknowledgment

(SLEE) alal) éha 45550 Lag ain i Chas) b aey)

It would not have been possible to write this master thesis without the help and support
of the kind people around me, to only some of whom it is possible to give particular mention
here.

Above all, | would like to express my thanks and sincere gratitude for who has guided me
through my study and my thesis work; my supervisor prof. Said Ghoul, for giving the wisdom,
strength, support and knowledge in exploring things.

| would like to thank my family members; My father, My mother, brothers, sisters, uncles

and my friendsfor giving me their unequivocal support throughout, as always, for which my
mere expression of thanks likewise does not suffice.

Also, | am grateful for those who supported me and encouraged me in any way; my
teachers at Philadelphia University.

Ahmad Fouaad Alsultan

2014

VI

Table of Contents

Subject Page
Dedication \%
Acknowledgment VI
Table of Contents VII
List of Tables X
List of Abbreviations X
List of Figures XI
Abstract Xl
CHAPTER ONE: INTRODUCTION 1
1.1 Preface 2
1.2 Research Context 3
1.3 Problem Statement 4
1.4 Motivation 4
1.5 Contributions 4
1.6 Thesis layout 5
CHAPTER TWO: RELATED WORK 6
2.1 Introduction 7
2.2 Divide and conquer current modelling approaches 7
2.3 Meta model concepts 10
2.4 Meta Modelling languages 12
2.5 Thesis motivation 14
CHAPTER THREE: DIVIDE AND CONQUER VARIABLE CASES 15
3.1 Introduction 16
3.2 Divide and conquer general pattern 16

VI

3.2.1 without dimension 16

3.2.2 with dimension 17

3.3 Divide and conquer method specializations 18

3.3.1 Divide and conquer with empty small solution 18

3.3.2 Divide and conquer with empty combine 19

3.3.3 Divide and conquer empty combine with empty small solution 20

3.3.4 Divide and conquer with parallelism 21

3.3.5 Divide and conquer with memorization 99

CHAPTER FOUR: AVARIABILITY META MODEL IN DIVIDE AND

CONQUER METHOD 24

4.1 Introduction 25

4.2 A methodology for designing algorithms variability by divide and conquer 25

4.3 Divide and Conquer Algorithms Variability Meta Modelling Phase 26

4.3.1 Divide and conguer meta modelling by Feature Diagram 26

4.3.2 Divide and conguer meta modelling by UML 31

4.4 Problem Specific Algorithm Instantiation Phase 33

4.4.1 Problem specific algorithm meta model selection request 33

4.4.2 Problem specific algorithm meta model instantiation 36

4.4.3 Problem specific algorithm variability parameters fixing 37

4.4.4 Problem specific algorithm 39

4.5 Discussion 40
CHAPTER FIVE: IMPLEMENTATION ISSUES, EVALUATION, APPLICATION

AREAS AND PERSPECTIVE 41

5.1 Introduction 42

5.2 Implementation issues 42

5.3 Application areas 42
5.4 Evaluation 42
5.5 Conclusion: perspectives and future works 44
References 46
Appendix 48
waile 54

List of Tables
Table Number Table Title Page
o-1 Divide and conquer meta modelling concept 42

Comparison between related work and thesis
5-2 43
contribution

List of Abbreviations
Abbreviation Full Name
MM Meta Model
UML Unified Model Language
FD Feature Diagram
D&C Divide and Conquer
BNF Backus—Naur Form

XI

List of Figures

Figure Number Figure Title Page
Figure 1-1 Divide and conquer method 2
Figure 2-1 Structure of divide and conquer 7
Figure 2-2 Sum array in divide and conquer 8
Figure 2-3 Framework unifying different sorting algorithms 9
Figure 2-4 Quick sort algorithm 9
Figure 2-5 Meta model layers 10
Figure 2-6 Meta Modelling divide and conquer 11
Figure 2-7 Relation between feature diagrams 12
Figure 2-8 The model divide and conquer with combine case 13
Figure 2-9 Relation between classes in UML 13
Figure 2-10 Divide and conquer model by UML 14
Figure 3-1 Divide and conquer without dimension 16
Figure 3-2 Read tree by divide and conquer without dimension 16
Figure 3-3 Divide and conquer with dimension 17
Figure 3-4 Sum by divide and conquer method 17
Figure 3-5 Divide and conquer without small solution 18
Figure 3-6 Sorting by divide and conquer method 19
Figure 3-7 Sorting by divide and conquer method 19
Figure 3-8 Read by divide and conquer method 20
Figure 3-9 Divide and conquer empty combine without small solution 20
Figure 3-10 Read regular tree by divide and conquer algorithm 21
Figure 3-11 Divide and conquer with parallel 21
Figure 3-12 Divide and conquer with parallel 22
Figure 3-13 Divide and conquer with memorization 22
Figure 3-14 Factorial by divide and conquer with memorization 23
Figure 4-1 Divide and Conquer Meta Modeling methodology 25
Figure 4-2 Divide and conquer by meta model technique 26

Figure 4-3-A Divide and conquer method with combine and Text 27
Figure 4-3-B Divide and conquer method with combine with empty small 28
Solution and Text
Figure 4-3-C Divide and conquer method with empty combine and Text 29
Figure 4-3-D Divide and conquer method with empty combine with empty 31
small Solution and Text.
Figure 4-4 Divide and conquer model by UML 32
Figure 4-5 Instantiation phase, using Data flow Diagram 33

Xl

. Problem specific algorithm meta model selection request, 3
Figure 4-6
using flow charts.
Problem specific algorithm meta model instantiation, using
Figure 4-7 flow charts.
37
Problem specific algorithm meta model instantiation
Figure 4-8 Example.
37
Problem specific algorithm variability parameters fixing,
Figure 4-9 using flow charts. 38
Problem specific algorithm variability parameters fixing
Figure 4-10 Example. 38
Figure 4-11 Problem specific algorithm, using flow charts. 39
Figure 4-12 Problem specific algorithm Example 39

Xl

Abstract

Divide and Conquer (D&C) is a very broad problem solving pattern, used in several areas:
mathematics, computer science, physics, engineering, etc. Consequently it constitutes an active
topic for varied researches. Some researches deal with the approach enhancements
(parallelization, distribution, adaptation, etc.). Others deal with its application to solve various
problems in different application domains and its evaluation. But despite this active and intense
research, until now: (1) no general D&C method variability meta model, that covers several
classes of problems in different domains, (2) no formal methodology supporting this variability,
(3) no formal problem specific variation selection and instantiation process, and (4) no
modelling languages suitable features have been proposed.

However, rare patterns for specific problems were developed. Developing a broad divide and
conquer pattern requires the application of abstraction techniques where the meta modelling is
the best candidate. Its intensive and continuous enhancement researches, power, broad use, and
formalization capacities with its supporting languages like the Unified Modelling Language
(UML) and Feature Diagram (FD), make it an effective model at the top rank.

This thesis, aims to overcome the above four D&C researches insufficiencies by proposing a
rich and general D&C method development methodology based on variability modelling in
D&C method and on a formal variation selection and instantiation process. Obtained result
states clearly the suitability of FD formalism instead of UML for this kind of meta modelling
and identifies UML possible enhancement that may generalize it to support methods variability
meta modelling.

CHAPTER ONE: INTRODUCTION

1.1 Preface

Problem solving (Koripadu, 2014; Rebori, 1995) is one of the important process in
computer science domain. Problem solving has many steps defining solving process model: the
first step is defining the problem. The second step is identifying and defining a root case. The
third step is generating alternative solutions. The four step is evaluating the alternatives. This
Problem solving model has been used for variable problems.

Divide and conquer is one of the applications of problem solving methods. (Figure 1-1) it
is a very broad problem solving pattern practically used in all complex scientific areaes:
mathematics, computer science (in all area), physics, engineering, etc. It processes by recursively
braking the problem into sub problems until reaching small cases for which small solutions exist,
then combining these solutions in a way to carry out the complete solution (Chow, 2013; vander,
2012). Consequently, it constitutes an active challenging topic for varied researches (Lopez-
Ortiz, 2014; Jin, 2012; vander, 2012).

Many problems in computer science can be solved iteratively or recursively. Divide and
conquer is a recursive method defying a general design pattern from which specific problem

solving might be generated.

Scarce research works have been conducted in divide and conquer meta modelling. An
earlier attempt has used a design pattern technique for the most general divide and conquer
model (Francés, 1998). Later, the Unified Modelling Language (UML) has been used for
modelling sorting algorithms (Rahmani, 2010) but no one general Divide and Conquer Meta

model, that covers several classes of problems in different domains, has been yet proposed.

solution

Initial problem space Sub problem space

Figure 1-1. Divide and conquer method.

Divide and conquer design pattern may vary from one problem to another and modelling
this variability is a challenge in the domain. Developing a broad divide and conquer pattern
requires the application of abstraction techniques where the meta modeling (Gitzel, 2005;
K uhne, 2006; Williams, 2013; Zuniga, 2013) is the best candidate. Effectively, a metamodel is a
general abstraction from that other more specialized abstractions (Ehrig, 2009) and specific
instances (Hao Wu, 2012) may be generated. Its intensive and continuous enhancement
researches (Sprinkle, 2010), capabilities (Ma, 2013; Witherell, 2013), and formalization
capacities (Henderson-Sellers, 2012; Giacomo, 2011), and its supporting languages like UML
(Byrne, 2013) and feature diagrams (Kang, 1990), make it at the top rank.

1.2 Research Context

The idea of this thesis is to develop a meta model for divide and conquer. So its research

context is about meta modelling, and divide and conquer methods.

Some researches deal with the divide and conquer approach enhancement (Lopez-Ortiz,
2014; Mateos, 2013; Hijma, 2008). These enhancements were generally proposed for supporting
features like parallelization, distribution, synchronization, and more specific problem constraints.
These related enhancements were separately developed but were not modelled in a structured
abstract way, illustrating relations between them and allowing more effectiveness,
comprehension, and reuse for building furthers ones. However some specific design pattern were
presented (Francés, 1998; Rahmani, 2010).

A design pattern was presented by Javier and Julio (Francés, 1998), this design pattern

does not deal with variability in problems, it is only a fixed method defined with UML notation.

An object oriented framework was presented by Rahmani and his colleagues (Rahmani,
2010) for modelling variability of sorting algorithms. All sorting algorithms are instances of the
class “Asorter” only by defining the functions Split and Join. This framework is limited to
sorting problems. So, it doesn’t deal with variability of problems, but it is a specialized and
limited case of a broad divide and conquer method.

http://www.dblp.org/pers/hc/m/Ma:Zhiyi.html
http://www.dblp.org/pers/hc/w/Witherell:Paul.html
http://www.dblp.org/pers/hc/h/Henderson=Sellers:Brian.html
http://www.dblp.org/pers/hc/g/Giacomo:Giuseppe_De.html

1.3 Problem Statement

From previous works, there are many challenges that might be defined:

e Methodology: there are many general patterns for divide and conquer method but they

do not have methodology guiding their use.

e Meta modelling divide and conquer: the general pattern does not address variable
cases such as empty combine, parallels or sequential schemas, empty small solutions,

memorization, etc.

e Formalization: The used modelling notation in previous works is a Unified Language
Model (UML) notation without adaptation evaluation. There are other languages in

meta modelling that may be used in this case like Feature Diagram (FD).

e Instantiations process: there is not process to define instance of general pattern in

actual divide and conquer method general pattern.

1.4 Motivation
The proposed research in this thesis was motivated by the following:
e Absence of a methodology that guides divide and conquer problem solving method.

e Absence of a broad meta modelling that deals with large cases of divide and conquer

method.
e The limitation of the used notation to UML.

e Absence of instantiations process to generate instance from the divide and conquer

general pattern.

1.5 Contributions

This work aims at designing a divide and conquer methodology based on a broad meta

modelling:

e Providing a methodology to support general pattern divide and conquer method meta

modelling.

e Designing a broad divide and conquer method based on meta modelling technique

leading to a high abstraction meta model.

e Using UML and Feature Diagram as research and evaluate the adaptability of each

one.

e Proposing a technique process for generating instance algorithm, specific to problem
solving from the proposed divide and conquer meta model.

1.6 Thesis layout

The thesis starts with introducing the research problem in chapter one, related work
in chapter two, then representing divide and conquer variable cases in chapter three. The
proposed contributions solving some identified challenges in chapter four, and the
evaluation of the conducted research in chapter five.

CHAPTER TWO: RELATED WORK

2.1 Introduction

This chapter presents some significant previous works in divide and conguer and introduces
concepts of Meta Modelling (MM), Unified Model Language (UML) and Feature Diagram (FD).

Divide and conquer was approached by some researchers in the last years. Some had
researches dealt with the divide and conquer approach enhancement (Lopez-Ortiz, 2014; Mateos,
2013; Hijma, 2008). A Design pattern was presented by Javier and Julio (Frances, 1998), this
design pattern does not deal with variability in problems. An object oriented framework was
presented by Rahmani and his colleagues (Rahmani, 2010) for modelling variability of sorting

algorithms.

The Meta Modelling (MM) concepts are important domain of research: (1) in general
abstraction (Sprinkle, 2010; Hao Wu, 2012; Gitze, 2005), (2) in specialized abstractions, (3) in
supporting languages like UML (Byrne, 2013), and in Feature Diagrams (FD) (Kang, 1990).
This makes it at the top rank.

2.2 Divide and conquer current modelling approaches

Divide and conquer is a method of problem solving, it is a very broad problem solving pattern

practically used in all complex scientific areas.

Two researches presented divide and conquer (Francés, 1998; Rahmani, 2010) with

specific model.

Javier and Julio (Francés, 1998) presented a design pattern for a high abstract divide and
conquer, the structure of this design patterns, modelled with UML notations, is presented in
(Figure 2-1) (Francés, 1998).

AbstractProblem AbstractSolution

Schema

I=Small {3 — o DvirectSolation ¢)

o Solve()

Driwvide {0 Combine {3
Problem _ Problem Solution Solucién
MergeSort Binary Search MergeSort Binary Search
IsSmall () IsSmall) DirectSolutzon.) DirectSclution {3
Divide ¢ 3 Diwvide () Combine () ol Bine {0

Figure 2-1. Structure of divide and conquer.

The schema (of divide and conquer) that composed of two components: (1) the Abstract
Problem, containing the definition of the small problems (Is Small), for which a direct solution
exist, and the composed problem (Divide), its solution which will be obtained from combining
solutions of smallest problems. (2) Abstract Solution contains the definition of small solution
associated with small cases sub-problems, and the definition of combine composing a global
solution for small cases solutions. The work also presents the use of UML interaction diagram,
and the sequence control in the schema. Specific algorithms solving particular problems, are
instantiated from this design pattern, by specifying the generic parts: IsSmall, Divide,

DirectSolution, Combine, sequence diagram.

An example, the (Figure 2-2), presenting the sum of array elements.

Abstract Problem Schema Abstract Solution
IsSmall() . DirectSolution()
Divide() — ‘D&{T{Pb_D, Solution) Ko— Combinel)

If (small Pb_D case) then small solution;

Else {// Divide the problem into N parts;

D&C (Party, Sub Sol,); Y,
D&C (Part,, Sub Sol,);

D&C (Party, Sub Soly);
Combine (Sub Sol;, Sub Sol,,..., Sub Soly);
}
]

Sum element in Array Sum element in Array
1sSmall()]]
{1element; DirectSolution()

{if{L=R) then solution €< Array[L];

if{L=R-1) then solution € Array[L]+Array[R];}
Combine()

{solution€solution1+solution2;}

2element}
Divide()
{into lift and right
Parts;}

Figure 2-2. Sum array in divide and conquer.

However, this general design pattern does not specify cases where combine is empty, the
schema is parallel or sequential, top down or bottom up, domain specific, etc. So, the knowledge

reuse is poorly limited to the general structure of the design pattern.

Rahmani and his colleagues (Rahmani, 2010) have presented an object oriented

framework for unifying different sorting algorithms as in (Figure 2-3) (Rahmani, 2010).

ASarter Awder
T ACuder - aCnsder =
FF ASorten] A Cder a0kder)
* void C pori{Cihjeet[] &, mi o, int ha)
T ans - splitfOhgect[T A, inf fo, anf I
FE vosd - fointObfectl] A inf fo, ind 5, 8 i)
* void - setCirden A0 rder alwder)

if (lo =hi)
i g = gplil A, ko, hi),
sort(h, o, s-17;
eorlls, 8, hid,

L T joinii, o, 5, hi);
{I::l Hubble Sorter !
Graphic Sonier LI
Heap Sorter
SelectionSonter QuickSorier -
|
A
Merze Sorter Inzertion Sorler Heapifier
-]

Figure 2-3. Framework unifying different sorting algorithms.

All the sorting algorithms are instances of the class “Asorter” only by defining the
functions Split and Join. This framework is limited to sorting problems. This class is used in sort

case only, so it is not useful for others cases.

An example, the (Figure 2-4), presenting the quick sort of array elements.

ASort

#AOrder:aOrder e #AOrder:aOrder
/

#ASorte(AOrder aOMEr}F_‘\\
+void: Sort(Object|[] A, int lo, int hi)

If(lo<hi){
#int: split(Object(] A, int lo, int hi) int s= split{A, lo, hi);
tvoid: join{Object(] A, int lo, int s, int hi) Sort(A,lo,s-1);
#void: setOrder (AOrder aOrder) Sort(A, s, hi);

join(A, lo, s, hi);

% }
QuickSort ?

#AOrder:aOrder

#AQuick(AOrder aOrderj@— - If{lo<hi){

+void: quick(Object[] A, int lo, int hi) int s= split{A, lo, hi);
#int: split{Object[] A, int lo, int hi) quick(A,lo,s-1);
#void: join(Object[] A, int lo, int 5, int hi) quick(A, s, hi);
#void: setOrder (AOrder aOrder) join(A, lo, s, hi);

Figure 2-4. Quick sort algorithm.

2.3 Meta model concept

Meta Modelling (MM) (Sprinkle, 2010) is a rule to represent the system or model in

general abstraction through using meta modelling language, and how to generate instance from

general model.

A model is represented by meta model techniques (Sprinkle, 2010; Hao Wu, 2012;
Gitze, 2005), it is a powerful technique. A Meta Modelling was represented by four layers: the
first layer consists of meta-meta model that describe and define meta model layer. The second
layer consists of meta model that define language to describe model layer. The third layer

consists of model that. The fourth layer consists of instance from a model in the third layer as in

(Figure 2-5) (Sprinkle, 2010).

Meta-metamodel

defines

conforms to

Metamodel

defines

conforms to

Model

abstracts

implement

Semantic Artifacts
(e.g., code, simulation)

My layer

M layer

My layer

M3 layer

Figure 2-5. Meta model layers.

Now will be explain the layers in meta model architecture (Clark, 2008):

o Meta-meta model layer: this layer describes the characteristic in meta model layer like

modelling languages.

e Meta model layer: this layer contains in language like UML, FD, classes, attributes, and

operations.

11

e Model layer: this layer contains application object-oriented system, and the table

definitions of a relational database.

e Instance layer: this is instance of object oriented class, instance of method or part of table

database.

An example, the (Figure 2-6), presenting the divide and conquer Meta Modelling layers

for sorting example.

{

}

D&C [Problem, Sclution)

Divide the problem into sub problems;
Solve each sup problems;
Combine the sclutions;

{

i

DE:C |Pb_Dimension, Solution)

Divide the problem into N parts;
D&C [Part,, Sub Soly);
DEC [Party, Sub Soly);

DE&C (Party, Sub Soly);
Combine the solutions;

{

}

DE&C [Pb_D, solution)

If {not small Pb_D case)

1// Divide the problem into M parts;
DE&C (Parti, Sub soli);
DEC (Part2, Sub sol2);

D&C (PartN, Sub SolM);
Combine (Sub 5ol1, Sub 50iz, .., Sub SolN);

h

{

quicksort] int low, int high)

if[left <right]

{
int m=zpilt {low, high, array};
sort{low, mj;
sortim, high);
combine(array, low, m, highl;

MO (General D&C)

Meta-meta Model

M1 D&C (with dimension)

Meta model

M2 D&C (Combine with Empty small case)

M3

Model

D&C (quick Sort)
Instance

Figure 2-6. Meta Modelling divide and conquer.

Meta Modelling (MM) has been approached in several domains (Hao Wu, 2012; Gitze,

2005) in software engineering using Meta Modelling (MM) to create high abstraction model and

presented systematic literature review of instance generation techniques for meta models.

12

The Meta Modelling (MM) is approached by some modelling language like Unified
Model Language (UML) (Byrne, 2013) and Feature Diagrams (FD) (Kang, 1990).

2.4 Meta Modelling language

Meta Modelling language is a tool for supporting the meta model technique in
representing the model. Some of these languages are Unified model language (UML) and

Feature diagram (FD).

e Feature Diagram

Feature diagram (Kang, 1990) represents model as tree, this tree consists of the system’s

name at the top, and children for this system, whereas these children represent features.

Feature diagram has a huge relationship (Kang, 1990) between the features. We will use

some relationship as in (Figure 2-7):
e Mandatory: this case means you must choose this child due to features.
¢ Optional: this case means you can choose this child or another child from features.

e Alternative: this case means you have multi children feature, you can choose only one

feature from them.

¢ Or: this case means you have multi children feature, you can choose one or all feature

from them.

Feature Diagram (FD) (Kang, 1990) used in software product line easily representing

EAE

Manoatory OPTIOMAL ALTERMATIVE Or

system.

Figure 2-7. Relation between feature diagrams.

An example, the (Figure 2-8), presenting divide and conquer with combine case.

13

Empty
Combine

Without
Small solution

Without
Small solution

.
] [[[c] 5] [

ANDATORY OPTIONAL ALTERNATIVE Or

ca
112

ca
(5§

ca
n2 |-

ca
11

ca
11

ca
12

IN

Figure 2-8. The model divide and conquer with combine case.

e Unified Model Language (UML)

Unified Model Language UML (Byrne, 2013) represents model and system in
hierarchical form. There are many notation for representing model in UML that will support our
study. Class diagram consists of: class name, attributes and operations. The attributes consist of
global variable that will be used in the method, the operations consist of method from divide and

conquer.
There are many relations (Byrne, 2013) between classes as in (Figure 2-9):
e Dependency: when a class needs data or information from another class.
e Association: when a class is connected with another class.
e Inherits: this relation connects father and son.

e Aggregation: this relation means multi class gives big relation.

‘ CLASS1 ‘ ‘ CLASS1 ‘ ‘ CLASS1 ‘ ‘ CLASS1 ‘
‘ CLASS1 ‘ ‘ CLASS1 ‘ ‘ CLASS1 ‘ ‘ CLASS1 ‘

DepPENDENCY AsSSOCIATION Inherits AGGREGATION

Figure 2-9. Relation between classes in UML.

14

An example, the (Figure 2-10), presenting divide and conquer by UML.

Meta-Meta Model DivideAndConquer
+DivideAndConquer:Text
Class A
+instance() ? ~
"OR™,
““““%’ '''''''''''''''''''''''''''''' Instande instance
Meta Model w" e Teel
-1 o Class B Class C
D&CWithDimension D&CWithoutDimension
. K i . . K ?: 1ext instantiation to be defined
+D&CWithDimension:Text +D&CWithoutDimension:Text

??: This Instance-of relation is
nat definad in UML

Figure 2-10. Divide and conquer model by UML.

2.5 Thesis Motivation

From the previously mentioned, based on meta model technique, supporting language
like UML and FD and the research in divide and conquer method, this thesis is proposing general

divide and conquer by Meta modelling.

This general model divide and conquer provides a methodology, that presents how to
build meta model for divide and conquer and provides process to generate instance from general

divide and conquer method.

CHAPTER THREE: DIVIDE AND CONQUER
VARIABLE CASES

16

3.1 Introduction

Divide and conquer may be used for solving broad classes of problem. In this chapter,
several specific examples will be introduced for clarifying the problem. This example is among
the thesis contributions. In fact they are developed for the thesis proposes.

3.2 Divide and conquer general pattern

The general case in divide and conquer works without dimension and with dimension.

3.2.1 Without dimension

This case means the problems will be divided irregularly into all programs steps (Figure 3-1).

D&C (Parameter, Solution)
1
If (small problem case) then small solution;
Else {// Divide the problem as current state
D&.C (Party, Sub Sol,);
D&.C (Party, Sub Sol;);
D&C (Party, Sub Soly);
Combine (Sub Sol,, Sub Sol;,..., Sub Soly);
I
i

Figure 3-1. Divide and conquer without dimension.
(Figure 3-1) presents divide and conquer algorithm without dimension. The first step consists
of condition to stop divide problem, the second step divides problem into sub-problems as

requirement, the third step solves each sub-problem, and the fourth step combines all sub-

solutions.

Example search in tree (Figure 3-2):

ReadlrregularTree (Root) —+ Without Dimension

{

if(node not equal null) Small cases;’not small
{ solutions

int m=number children in current node;——__| Divide problem into Sub
ReadlrregularTree (Child1); Problems as number Child
ReadlrregularTree (Childz);

...... Solve Sub Problems
ReadlrregularTree (ChildN}/

//Empty Combine —— Combine is empty

}
¥

Figure 3-2. Read tree by divide and conquer without dimension.

17

This example is a specific case in divide and conquer method without dimension. The
parameter in this case consists of Root that will read its children. The characteristics consist:
firstly of small problem (node!= null) and without small solution. Secondly it consists of divide
problem as child number. Thirdly it consists of sub problems (call same method) for new array

size. The divide will stop if (node = null).

3.2.2 With dimension

This case means that the problems will be divided regularly into all programs steps (Figure
3-3).
D&C (Pb_D, Solution)
{
If (small Pb_D case) then small solution;
Else {// Divide the problem into N parts;
D&C (Part;, Sub Soly);
D&C (Part;, Sub Sol;);
D&C (Party, Sub Soly);
Combine (Sub Sol;, Sub Sols,..., Sub Soly);

}
}

Figure 3-3. Divide and conquer with dimension.

(Figure 3-3) presents divide and conquer algorithm with dimension (general case). The first
step consists of condition to stop divide problem, the second step divides problem into N part in
each algorithm circle, the third step solves each sub problem, and the fourth combines all sub

solutions.

Example sum elements in Set (Figure 3-4):

Sum(int left, int right, int solution) Dimension

q s
int Solution, , Solutiony; Small cases = small
if(left = right) then solution=array[left]; solutions

else if{left = right-1)then sol=array[left]+ array[right]; Divide problem into Sub

else{ //_/—4
Probl
int m=(left + right)/2; fobrems
e oo | Solve Sub Problems
sum({m+1, right, Solution,};

solution=5olution, + Solution,; _

Combine

Figure 3-4. Sum by divide and conquer method.

18

This example is a general case in divide and conquer method with dimension. The
parameters in this case consists of dimensions (left, right) which means that the problem will be
divided into two parts, a solution means a result. The characteristics consist firstly of small
solution (left=right or lift=right-1) and small solution (sol=array [left] or sol=array [left] +array
[right]). Secondly it consists of divide problem. Thirdly it consists of sub problems (call same
method sum) for new array size. The divide will stop to small solution. Fourthly it consists of

combine, this characteristic means building solvation from previous one.

3.3 Divide and conquer method specializations

Many problems can use divide and conquer method, these problems differ from each other in
parameters and characteristics. Some problems don’t have small solution, while another do not

have combine to solve problem etc.
3.3.1 Divide and conquer with empty small solution

Divide and conquer with empty small solution will be presented in (Figure 3-5).

D&C (Pb_D, Solution)

{
If (not small Pb_D case)

{// Divide the problem into N parts;
D&C (Part,, Sub Sol,);
D&C (Part;, Sub Sol;);
D&C (Party, Sub Soly);
Combine {Sub Soly, Sub Sols,..., Sub Soly);

¥
I

Figure 3-5. Divide and conguer without small solution.

(Figure 3-5) presents divide and conquer algorithm with empty small solution. The first step,
this algorithm does not have small solution but there is special condition to stop algorithm as
(find element and equal index, Etc.), the second step divides problem into (N) part in each
algorithm circle, the third step solves each sub-problem, and the fourth combines all sub

solutions.

Example sorting algorithms may use divide and conquer method to sort items in a set.
Sorting algorithm has many methods to sort item as (quick sort, bubble sort, merge sort etc.). A

Rahmani presented sorting (Rahmani, 2010) model by UML as in (Figure 3-6).

19

Quicksort(int low, int high) Dimension
{
if(left <right) Special condition
{
int m=spilt (low, high, array);——7— | Divide problem into Sub
Quicksort (low-m); Problems
Quicksort(m, high};

combine(array, low, m, high); Solve Sub Problems

) T

Combine

Figure 3-6. Sorting by divide and conquer method.

This example is a special case from general case, the parameters in this case are dimension
(low, high) which means that the problem will be divided into two parts. The characteristics in
this case differ slightly from those in the general case. Firstly there is not small solution (small
case low< high), it has small case but it doesn’t have small solution. Secondly it consists of
divide problem, here the used method (split) to divide problem, and the split method differs from
one method to another in sorting. Thirdly it consist of sub problems (call same method sort) for
new array size, the divide will stop if (low>=high). Fourthly it consists of combine, this

characteristic means building solvation by aggregation of elements in array.
3.3.2 Divide and conquer with empty combine

Divide and conquer with empty combine will present in (Figure 3-7).

D&C (Pb_D)
{

If (small Pb_D case) then small solution;
Else {// Divide the problem into N parts;
D&C (Party, Sub Soly);
D&C (Part;, Sub Sol;);
D&C (Party, Sub Soly);
/{Combine is empty;
1
H

Figure 3-7. Divide and conquer empty combine.

(Figure 3-7) presents divide and conquer algorithm with empty combine. The first step
consists of condition to stop divide problem, the second step divides problem into N part in each
algorithm circle, the third step solves each sub problem, and there is not combine because the

algorithm chooses one sub solution.

20

Example Read elements in Set (Figure 3-8):

Read(int left, int right) Dimension
{

Small cases = small

if(left = right-1) then read array[left]; ———| utl
solutions

else{

int m=(left + right)/2; ————— | Divide problem into Sub
Read(left, m,); Problems

Read(m+1, ri h&
(ght) Solve Sub Problems

//Empty combine

} \‘
} Combine is empty

Figure 3-8. Read by divide and conquer method.

This example is a special case from the general case. the parameters in this case are
dimension (low, high) which means that the problem will be divided into two parts, and there are
many characteristics: Firstly of small case (left=right-1) and small solution (read array[left]).
Secondly it consists of divide problem. Thirdly it consists of sub-problems (call same method
Read) for new array size. Read method doesn’t contain combine characteristic because the

method does not interest in aggregation elements.

3.3.3 Divide and conquer empty combine with empty small solution

Divide and conquer empty combine without small solution in (Figure 3-9).

D&C (Pb_D)
i
If (If (not small Pb_D case)
{// Divide the problem into N parts;
D&C (Party, Sub Soly);
D&C (Part;, Sub Soly);

D&C (Party, Sub Soly);
//Combine is empty;

1
1

Figure 3-9. Divide and conquer empty combine without small solution.

(Figure 3-9) presents divide and conquer algorithm with empty combine empty small solution.
The first step, this algorithm does not have small solution but there is special condition to stop
algorithm as (find element and equal index, Etc.), the second step divides problem into N part in
each algorithm circle, the third step solves each sub problem, and there is not combine because

the algorithm choose one sub solution.

21

Example Search elements in Set (Figure 3-10):

ReadRegularTree(Root) — Dimension

{
if(Node!=Null) Special condition
{

divide problem left and right—— | Divide problem into Sub
ReadRegularTree (left);

Problems
ReadRegularTree {right&%
//Empty combine Solve Sub Problems
! \
}

Figure 3-10. Read regular tree by divide and conquer algorithm.

Combine is empty

This example is a special case from general case. There are one parameters (Root) which
means dividing the problem into two dimension, and there are many characteristics: Firstly of
small case (Node!=Null) without small solution. Secondly it consists of divide problem. Thirdly
it consists of sub problems (call method Read) to read the children. Read method does not
contain combine characteristic because the method needs read element.

3.3.4 Divide and conquer with parallelism

The presence of multi process has been driven to think about the parallel case by divide and
conquer method (Lopez-Ortiz, 2014) in (Figure 3-11).

D&C (Pb_D, Solution)
{
If {small Pb_D case) then small solution;
Else {// Divide the problem into N parts;
Doin Parallel {
D&C (Party, Sub Sol,);
D&C (Party, Sub Soly);

D&C (Party, Sub Soly);
Combine (Sub Soly, Sub Sol,,..,5ub Soly);
1

Figure 3-11. Divide and conquer with parallel.

(Figure 3-11) presents divide and conquer algorithm with parallel. The first step consists of
condition to stop divide problem, the second step divides problem into (N) part in each algorithm
circle, the third step solves each sub-problem and all sub-problem works in same time on

separately process, and the fourth combines all sub solutions.

22

Example Sum elements in Set with Parallel (Figure 3-12):

Suml(int left, int right, int solution) . .
q - —> Dimension
int Solution, , Solution,; Small cases = small

if{left = right) then solution=array[left]; ———7’ solutions

else if(left = right-1)then sol=array[left]+ array[right]; Divide problem into Sub

|
else{ 7 Problems

int m=(left + right)/2;

doin parallelf . Use multi process
sum(left, m, Solutlonl};\A
sum(m+1, right, Solution,};
solution=Solution, + Solution;

) T

) Combine

Solve Sub Problems

Figure 3-12. Sum in parallel by divide and conquer method.

The new in example, parallel was used by divide and conquer method. When using parallel

the time will be faster for problems solution by divide and conquer. Divide and conquer can be

used in parallel with all previous cases.
3.3.5 Divide and conquer with memorization

Sometimes divide and conguer uses to solve the same problem, instead of dividing the

problem into smallest case, memorization can be used to save the result. (Figure 3-13).

Memory A
D&C (Pb_D, Solution)
{

If (current case in A) then Solution € Solution from A;

Else {
If (small Pb_D case) then save small solution in A
Else {// Divide the problem into N parts;
D&C (Part,, Sub Sal,);
D&C (Part;, Sub Soly);

D&C (Party, Sub Soly);
Combine and save in A (Sub Sol;, Sub Solj,...,.Sub Soly);

Figure 3-13.Divide and conquer with memorization.

(Figure 3-11) presents divide and conquer algorithm with memorization. The first step
searches in memory if find solution, the algorithm will stop. The second step consists of
condition to stop divide problem, the third step divides problem into N part in each algorithm

23

circle, the fourth step solves each sub problem, and the fifth combine all sub solutions and save it

in memory.

Example Factorial number with memorization (Figure 3-14):

Memory A
Factorial (int number, int solution)

Use memory

{

if(lnumber in A) then solution=A;

else{
if(number==0 | |number==1)

Small cases = small
solutions

then solution =1;

else{

solution=number® Fagtorial{fnumber-1)

Divide problem into Sub
Problems and Solve it

save solution in A;

Combine

Figure 3-14. Factorial by divide and conquer with memorization.

Usually, memorization is used with static number because in every use the method will
repeat the same step. (Figure 3-14) using memory to save the result. The parameters (number)
the value is used to find factorial and (solution) to return result. This method will search in
memory to find the result stop method otherwise will divide problem and calculate the factorial.

Divide and conquer can use memorization with all previous cases.

CHAPTER FOUR: A VARIABILITY META MODEL IN
DIVIDE AND CONQUER METHOD

25

4.1 Introduction

This chapter presents the thesis contribution to the divide and conquer general
methodology, meta modelling by Feature Diagram (FD) and unified model language (UML), and
instance generating process.

4.2 A methodology for designing algorithms variability by divide and
conquer
In the following, a divide and conquer meta modelling methodology design will be
introduced, the methodology defines the main activities and their coordination producing a
divide and conquer algorithm specific to a given problem. The main activities are: divide and
conquer meta modelling, problem specific algorithm meta model selection request, Problem
specific algorithm meta model instantiation, problem specific algorithm variability parameters

fixing, and Problem specific algorithm.

Problem specific Problem specific
algorithm meta model | algorithm wvariability

selection request parameters fixing
Rule For Model Problem Data

Divide and Conqueri
I .) |
Probiem Speafic instance Algorithm !
ivi At | Problem specific H
o Divide and Congquer - algorithm meta model | lcorith —
Meta Model lGeneral M M e Froblem | @BOFILAM
[instantiation
. Model
Meta Model Phase : Instantiation Phase

Figure 4-1. Divide and Conquer Meta Modeling methodology, using Data flow Diagram.

This methodology has scenario in appendix to explain mechanism of action this
methodology by example.

The first step is providing a general meat modelling for divide and conquer. The second
step consists of two phases: (1) problem meta model selection request for determining a user
specific for a given problem. (2)Meta Modelling instantiation that produces a specific meta
modelling for the given problem. The third step produces divide and conquer instance algorithm
by filling the variable parts in the selected metamodel for the fixed problem, these parameters

were provided by the user. In the following, details of each methodology will be presented.

26

4.3 Divide and Conquer Algorithms Variability Meta Modelling Phase

The D&C variability meta model is shown in (Figure 4-2). The first layer consists of meta-

meta model. The second layer consists of meta model which presents divide and conquer having

dimension and divide and conquer without dimension. The third layer consists of model which

presents (Combine, Combine with empty small case, Empty Combine and Empty Combine with

Empty small case). The fourth layer consists of instance presenting the algorithm model from

layer three (example sum, sort, read, BFS, DFS and etc. (Figure 4-2).

MO Divide and Conquer
Meta- meta model P ko
-7 Instance
(W D& C—MNo Dimension D&C—With Dimension
.
Meta model _(__--:,/' s -
—--""" __-instange S

Empty Combine with
Empty Small Solution

Coml_:pine Combine with Empty

M2 . Empty Smfll Solution Combine
rModel H ' T ;
Ins‘t:gnce Instpnce Instance Instance
M3 H H H !
Instance Surrm,... Sort,... Read, Search,..... BFS,DFS, ...

Figure 4-2. Divide and conquer by meta model technique.

4.3.1 Divide and conquer meta modelling by Feature Diagram

In this section, The above D&C meta model (Figure 4-2), will be summary formalized
by feature diagram notations (Figure 4-3-A, Figure 4-3-B, Figure 4-3-C, Figure 4-3-D). D&C

method variations modelling study for problems without dimension is out of scope of this thesis.

Meta-meta model

Model

Instance

9

ca || cal|ca|ca
Ha jjnz2 jfnajnz2

Conguer

With empty With empty
Small solution Small solution

Parallel
[Parattel | [Maemo

Parallel
___ Zoomed Zoomed Procedure/F
e in out unction

g0 2 2 0 ::fi{ﬁ
= ”"I‘Q

ca
1

ca
i

MANDAT TIONAL ALTERNATIV!
Cal NDATORY OPTIONA ERN
I

ca Cal ca (| ca ca [[ca
N2 jl m ||

112 i j| nz2

Nn!

27

{

D&C (Problem, Solution)

Divide the problem into sub problems;
Solve each sup problems;
Combine the solutions;

DRC without Dimensinn

D&C (Pb_D, Solution)
{

If (small case) then small solution

Else {// Divide the problem into sub problems; Modl,

D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2);

D&C (PartN, Sub SolIN);
Combine (Sub Sol1, Sub Sol2,

Combine

..... Sub SoIN);

With empty
Small case

{

D&C (Pb_D, Solution)

If (small case) then small solution;
Else {// Divide the problem into sub problems;
Do in Parallel {
D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2);

D&C (PartN, Sub SoIN);

Combine (Sub Sol1, Sub Sol2, ..., Sub SoIN);

}

Camhina Darallal

}
Divide and Conquer
[
\
K \
?&C (Parameter, Solution) \ D&C (Pb_Dimension, Solution)
\
. {
I;gléiepthelp;obblesmlzs current state \‘ Divide the problem into N parts;
ose EPZZZ, sﬁb lezit \ D&C (Part1, Sub Sol1);
’ ' W \ v D&C (Part2, Sub Sol2);
D&c (PartN, Sub SoIN) N ! .
arthy, Sub >ol); N \ . D&C (PartN, Sub SoIN);
Combine the solutions; N N \ 7’ Combine thé solutions:
} N \ 7’ 5

D&C with Dimension

Memory A
D&C (Pb_D, Solution)
- =P
If (current case in A) then Solution € Solution from A;
Else {
If (small case) then save small solution in A
Else {// Divide the problem into sub problems;
D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2);

2 D&C (PartN, Sub SolN);

Combine and save in A (Sub Sol1, Sub Sol2,..., Sub SolN);
\ }
\ }
\
\ } r. L
N I e tinm
\
\
\
¥
Al
Memory A
D&C (Pb_D, Solution)
{
If (current case in A) then Solution € Solution from A;
Else {

If (small case) then save small solution in A
Else {// Divide the problem into sub problems;
Do in Parallel {
D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2);

D&C (PartN, Sub SolN);
Combine and save in A (Sub Sol1, Sub Sol2,..., Sub SolN);

Combine memorization with parallel

Figure 4-3-A. Divide and conquer method with combine and Text.

(Figure 4-3-A) presents a Combine variation FD of D&C method. Combine came from
dimension parameters. It consists of leaves (procedure or function) and many variations
features (with empty small case, parallel, memorization, memorization with parallel). Each

variation ends by leaves (procedure or function) with the number of call. The (Figure 4-3-A)
shows the Combine variations textual meta model.

Meta-meta model

Meta model

Model

28

’m|
Eonquers.]

With empty

Parallel

Smallsolution

Empty
Combine

Zoomed

With empty
Smallsolution

Zoomed
out

‘/Procedure/F\
N

unction

g

<1
ca || ca Cal ca || ca | ca || ca
Hi 2| IN Ha flu2 jjuz ju2
D&C (Problem, Solution)
D&C (Parameter, Solution) { D&C (Pb_Dimension, Solution)
{ Divide the problem into sub problems;
Divide the problem as current state Solve each sup problems; Divide the problem into N parts;
D&C (Part1, Sub Sol1); Combine the solutions; D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2); »® } D&C (Part2, Sub Sol2);
~ Divide and Conquer Meta-meta model v
D&C (PartN, Sub SoIN); - D&C (PartN, Sub SolN);
Combine the solutions; Combine the solutions;
}
DR C without Dimencinn DRC with Dimension
D&C (Pb_D, Solution) Memory A

{
If (small case) then small solution;
Else {// Divide the problem into sub problems;
D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2);
D&C (PartN, Sub SoIN);
Combine (Sub Sol1, Sub Sol2,..., Sub SolN);
}
}

Combine

{

D&C (Pb_D, Solution)
{
If (not small solution)
{// Divide the problem into sub problems;
D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2);

D&C (Pb_D, Solution)

If (current case in A) then Solution € Solution from A;
Else {
If (not small solution) {

D&C (Partl, Sub Sol1);
D&C (Part2, Sub Sol2);

D&C (PartN, Sub SolN);
Combine and save in A (Sub Sol1, Sub Sol2,..., Sub SolN);

Combine with empty small solution memorization

D&C (PartN, Sub SoIN);
Combine (Sub Sol1, Sub Sol2,..., Sub SolN);
}

Combine with empty small solution

D&C (Pb_D, Solution)

{

If (not small solution)
{// Divide the problem into sub problems;
Do in Parallel {
D&C (Party, Sub Sol,);
D&C (Part,, Sub Sol,);

D&C (Party, Sub Soly);
Combine(Sub Sol;, SubSol,,..., Sub Soly);

Combine with empty small solution parallel

N
Memory A
D&C (Pb_D, Solution)
{
If (current case in A) then Solution € Solution from A;
Else {
If (not small solution)
{// Divide the problem into sub problems;
Do in Parallel {
D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2);
D&C (PartN, Sub SolN);
Combine and save in A (Sub Sol1, Sub Sol2,..., Sub SoIN);
}
}
}
}

Combine with empty small solution memorization with parallel

Figure 4-3-B. Divide and conquer method with combine with empty small solution and Text.

(Figure 4-3-B) shows combine with empty small solution variation FD of D&C method.

With empty small solution coming from combine, and combine coming from dimension

29

parameters. It consists of leaves (procedure or function) and many variations features (parallel,

memorization, memorization with parallel). Each variation ends by leaves (procedure or

function) with the number of call. The (Figure 4-3-B) shows the combine with empty small

solution variations textual meta model.

Meta-meta model

Divide and
Conquer

D&C NO-
Dimension

Meta model

Empty
< Combine
Combine
emp
Model With empty all so o
Smallsolution Parallel
Memo
Parallel
Instance T 2/ A L B .
Zoomed Zoomed [
ok out (\ unction D
= = A i
(2] LAl [a] P E P F p £
| SN //A\ ca|callcal ca
] [&] [@I e |2 || 2
ManDaTORy OPTIONAL ATERNATIVE Oa ca || ca Cal|[ca|lcal|calcal|calca Cal
Ha 2 | "IN Jfua 2 jfuaju2jfuafonz| IN
?&C (Problem, Solution) D&C (Pb_Dimension, Solution)
-) {
Divide the problem into sub problems; Divide the problem into N parts;
D&C (Parameter, Solution) Solvi?achhsup TrO_bIeTS; P 4 D&C (Part1, Sub Sol1);
{ Combine the solutions; L7 D&C (Part2, Sub Sol2);
Divide the problem as current state ! Divide and C ’ ’
D&C (Part1, Sub Sol1); i “A“ onquer R4 D&C (PartN, Sub SoIN);
D&C (Part2, Sub Sol2); A 1 ~ Combine the solutions;
S s }
D&C (PartN, Sub SoIN); f%@?fﬂﬁﬂ?@t\% ang sz DRC with Di ion
Combine the solutions; oo D&C (Pb_D)
y PR e - {
D&C without Dimension m S~-<o If (small case) then small solution;
. \ p— T=-~a -3 Else {//divide the problem in many Sub problem
D&C (Pb_D) ol D&C (Part1, Sub Sol1);
{ - Mem D&C (Part2, Sub Sol2);
If (small case) then small solution;)) o
Else {// Divide the problem into sub problems; \‘ -4 D&C (PartN, Sub SoIN);
Do in Parallel { : X //Combine is empty;
D&C (Part1, Sub Sol1); Memory A N }
D&C (Part2, Sub Sol2); D&C (Pb_D) \ }
{ ~ Emptyv Combi
D&C (PartN, Sub SoIN); If (current case in A) then Solution € Solution from A; :" N Memory A
//combine is empty Else { D&C (Pb_D)
} If (small case) then save small solution in A {
} Else { // Divide the problem into sub problems; If (current case in A) then Solution € Solution from A;
} Do in Parallel { Else {
Empty Combine parallel D&C (Part1, Sub Sol1); If (small case) then save small solution in A
D&C (Part2, Sub Sol2); Else {// Divide the problem into sub problems;
D&C (Part1, Sub Sol1);
D&C (PartN, Sub SolN); D&C (Part2, Sub Sol2);
//combine is empty
} D&C (PartN, Sub SolN);
} //combine is empty
! }
Emptv Combine memorization with Parallel }
}
Empty Combine memorization

Figure 4-3-C. Divide and conquer method with empty combine and Text.

30

(Figure 4-3-C) presents empty combine case that comes from dimension parameters. It
consists of leaves (procedure or function) and many variations features (with empty small case,
parallel, memorization, memorization with parallel). Each variation ends by leaves (procedure or

function) with the number of call. The (Figure 4-3-C) shows the Combine variations textual meta
model.

Divide and
Meta-meta model Conquer Zoomed Procedure/F
—— _in out
D&C NO- MBCHen

Dimension D&C-wit
Meta model Dimension

Model - Empty S : SAE\ !ﬁ&
Combine

Combine ManDATORY OPTIONAL _ ALTERNATIVE

With empty
Smallsolution

With empty
Small solution

Parallel

BFS

Parallel

Instance

ca ca ca
D&C (Parameter, Solution) Ha | nz2 || na llZ

{ l—‘
ca ca
Divide the problem as current state “i ﬁ; _____ f;‘ M " i ” & || @ " 2 ” «Q | = (I:aNI
A
D&C (Part1, Sub Sol1); D&C (Pb_Dimension, Solution)
D&C (Part2, Sub Sol2); D&C (Problem, Solution) {
{ Divide the problem into N parts;
Divide the problem into sub problems; D&C (Partl, Sub Sol1);
Solve each sup problems;

D&C (PartN, Sub SoIN);
Combine the solutions;

D&C (Part2, Sub Sol2);
} Combine the solutions;
DRC without Dimension } , D&C (PartN, Sub SolN);
x Divide and Conquer e Combine the solutions;
\
\
\ DRC with Dimension
\
\
D&C (Pb_D) \ D&C (Pb_D)
{ Meta-meta model {

If (small case) then small solution;

Else {//divide the problem in many Sub problem
D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2);

If (not small solution)

{// Divide the problem into sub problems;
D&C (Partl, Sub Sol1);
D&C (Part2, Sub Sol2);

Meta model

"""""""""" W =

D&C (PartN, Sub SoIN);

D&C (PartN, Sub SolN);
//Combine is empty;

//Combine is empty;

) D&C (Pb_D) : !
i Fmntv comhine with emntv small snlution
Empty Combine If (not small solution) u
{// Divide the problem into sub problems; Memory A
Do in Parallel { D&C (Pb_D)
D&C (Part1, Sub Sol1); {
D&C (Part2, Sub Sol2); If (current case in A) then Solution € Solution from A;
acallcaca 3 Else {
D&C (PartN, Sub SoIN); iz | ffun e j02 flua fuz fua fiuz] ! If (not small solution) {
//Combine is empty; D&C (Part1, Sub Sol1);
} D&C (Part2, Sub Sol2);
}
} D&C (PartN, Sub SolN);
Empty Combine with Empty small solution parallel //Combine is empty;
}
}
}
Empty Combine with Emptv small solution memorization

31

D&C (N)

If (not small solution)

{

Process (N);

INQ(N.left);

INQ(N.Right);

If (queue not empty) then D&C (DEQ (N));

}

Empty Combine with Empty small solution

Memory A
D&C (Pb_D)
11

Else {
If (not small solution)

BFS

Do in Parallel {

D&C (N)

If (not small solution)

{

Process (N);

If (condition left) Then INQ (N.left);
If (condition right) Then INQ (N.right);

D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2);

D&C (PartN, Sub SolIN);
//Combine is empty
}
}

If (current case in A) then Solution € Solution from A;

{// Divide the problem into sub problems;

If (queue not empty) then D&C (DEQ (N)); }
} _- D&C (N) ===
il 1 i N lca
Empty Combine with Empty small solution BFS smart yrad - If (not small solution) 2 [] Empty Combine with Empty small solution memorization with parallel
{
D&C(N) Process (N);
If (not small solution) D&C (N.left);
{ D&C (N.right);
Process (N); }
If (condition left) Then D&C (N.left); Empty Combine with Empty small solution DFS
If (condition right) Then D&C (N.right);

}
Empty Combine with Empty small solution DFS

Figure 4-3-D. Divide and conquer method with empty combine with empty small solution and
Text.

(Figure 4-3-D) presents empty combine with empty small solution. It consists of leaves
(procedure or function) and many variations features (parallel, memorization, memorization with
parallel and tree). Each variation ends by leaves (procedure or function) with the number of call.
The tree feature has two children DFS B (depth first search blind) and BFS B (breadth first
search blind). Each child has three features, two leaf (procedure and function) and child contain
S (smart) then this feature arrive to leaf (procedure and function). The (Figure 4-3-D) shows the
combine with empty small solution variations textual meta model.

4.3.2 Divide and conquer meta modelling by UML

This section tries to present the above D&C meta model (Figure 4-2) with UML class

diagram notations.

The primary class in meta-meta model layer is DivideAndConquer class, this class has
attribute (DivideAndConquer as Text) and operation (instance). The next layer is of two classes,
the first class D&CWithDimension consists of attribute (D&CWithDimension as Text). The

32

second class D&CWithoutDimension consists of attribute (D&CWithoutDimension as Text).

The relation between classes is instance.

Meta-Meta Model DivideAndConquer
+DivideAndConquer:Text
Class A
+instance() ? /,
"OR™,
““““%* """"""""""""""""""""""" Instande instance
Meta Model '??" o Tl
-1t '}} Class B Class C
D&CWithDimension D&CWithoutDimension
2 text instantiation to be defined
+D&CWithDimension:Text +D&CWithoutDimension: Text

??: This Instance-of relation is
not defined in UML

Figure 4-4. Divide and conquer model by UML.

The idea in (Figure 4-2), is that the bottom layer takes instance from above layers and
changes the text at the above layers to arrive at a new instance divide and conquer algorithm as

in the methodology in (Figure 4-1).

UML is suitable for operational problems but not for textual ones. So, it does not support

the instantiation concept nor the text concepts. The following problems are clearly stated:
e There is no textual instance relation in UML class diagram notation.

e In class diagram all attributes and operations in primary class will be contained in
children class, this machine is not needed in divide and conquer meta modeling,

which is a text modeling.

e The attribute and operation do not change from one class to another in D&C class
diagram notation. So each children class will contain new text as attribute, derived

from the ancestor text by a special instantiation relation.

33

4.4 Problem Specific Algorithm Instantiation Phase

Problem specific Problem specific
algorithm meta model o algorithm variability
= selection request & & | parameters fixing
% Rule For Model I E = Problem Data ;
% Divide and Conqueri
o I —_ I instance Algorithm !
Problem specific — |

| h del Problem specific
algorithm meta mode = _icorithm ———
instantiation Frabiem g

Flodel

ienaral M b

: Instantiation Phase

Figure 4-5. Instantiation phase, using data flow diagram notations.

Now there is the need for a technique to generate instance from general meta model, the
process will be divided into many steps. The first step will depend on entering sentence
describing specific problem from user or from example and process it. The second step generate
a problem meta model (schema). The third step will modify the problem meta model by the user.

The fourth part will product a D&C instance algorithm for the fixed problem.
4.4.1 Problem specific algorithm meta model selection request

The user will enter a sentence that describes the problem, this sentence must be processed to
convert it to a selection rule. If the sentence does not produce specific rule, the user will enter an
example, this example must be processed to convert it to a selection rule. If there is no specific
rule, the system will produce a default rule (Figure 4-6).

ProblemMMSelection()

|

Input sentence describing problem;

Ssentence describing the SentenceConvirtingToRule();
problem IF find schema
Sentence Input/output Data GenerateRuleForModel();
converting
Else
torules
. {
Find YES rocess Input example
Speﬂﬁ‘ ExampleConvirtingToRule();
ode
NO GenerateRuleForModel();
Rule by Example) }
1 Legend
Example
converting to
rules Sum array q
Geierate Problem meta model L
et) ¥ (ombine / procedure
I selection request
i 131056230 s

Figure 4-6. Problem specific algorithm meta model selection request and process, using flow

charts and Example.

34

(Figure 4-6) presents example of problem specific algorithm meta model selection request.
The user will give a sentence (sum array) or an example (1, 8, 10, 5, 6 =30), the process will

generate the suitable rule (combine/procedure).

e Sentence describing the problem:

The following BNF rules specify the used language for describing the specific

requirements of the problem at hand:

<Sentence>:= <key words>
<Key words>:= (<key word>) +
< Key word > ::=< default>
larray
|set
[list
|sort
|Search
| (Depth || top down || dfs) V (| breadth || level || bfs)
|smart
| (Sum || total || +)
| (multiply ||)
|(Less || lower || min)
| (Great || max || higher)
[read
|write
[Insert
|delete
[factorial
static data || use again || memory
|parallel ||multi thread || multi process || multi cpu
|procedure V function

<Default>:=procedure
[two call
||: the words same meaning; V: the words do not use together

e Example sentence:
= Sum array, Multiply list, Insert array, Read set, Sum set parallel, Write set parallel,
function, Factorial static, Search array, Search set parallel function, BFS smart, Sort
list function, Sort set parallel,..........
e Sentence converting to rule :
= Sum array V Sum set V Sum list >combine.

35

= Total array V Total set V Total list > combine.

= +array V +setV + list > combine.

= Multiple array VV Multiple set VV Multiple list > combine.

= *array V *set V * list > combine.

= Lessarray V Less set V Less list > combine.

= Lower array V Lower set V Lower list > combine.

= Minarray V Min set VV Min list = combine.

= Greatarray V Great set V Great list > combine.

= Max array V Max set V Max list > combine.

= Higher array V Higher set V Higher list > combine.

= Factorial array V Factorial set V Factorial list - combine.

= Sortarray V Sort set V Sort list > combine / empty small solution.

= Read array V Read set V Read list > empty combine.

= Write array V Write set V Write list > empty combine.

= |nsertarray V Insert set V Insert list > empty combine.

= Delete array V Delete set V Delete list > empty combine.

= Search array V Search set V Search list > empty combine.

= BFSV breadth V level - empty combine / empty small solution / BFS.

= BFS smart V breadth smart V level smart > empty combine / empty small solution /
BFS S.

= DFS V depth V top down - empty combine / empty small solution / DFS.

= DFS smart V depth smart V top down smart > empty combine / empty small solution
| DFS S.

= Static data V use again V memory - memorization.

= Parallel V multi thread V multi process V multi CPU - parallel.

= Procedure - Procedure.

= Function = Function.

= Default rule > combine / procedure

Example of rules:

= Sum array - [combine / procedure].

= Multiply list > [combine / procedure].

= |nsert element to array - [empty combine / procedure].

= Read set > [empty combine / procedure].

= Sum set parallel >[combine / parallel / procedure].

= Write set parallel function > [empty combine / parallel / function].
= Factorial static data >[combine / memorization / procedure].

= Search array >[empty combine / empty small solution / procedure].
= BFS S function > [empty combine / empty small solution / parallel / function].
= Sort list function - [combine / empty small solution / function].

= Sort set parallel > [combine / empty small solution / procedure].

36

e Rule by example and converting example to rule:

If the process fails to select instance from sentence, the user will enter example the process

will analysis example by rule:

[X1,X2,.....xn] 2 Y;

Schema: combine

[X1. X2, xn] =2 [Y1.Y2,- o9]

[X1,X2,.....,Xn] > [X1,X2,.....,Xn]

Schema: empty combine
[X1,X2,0e.0,Xn] = Null

[Xl,XZ,.. ..oy Xn]9 [XZ,Xn,.....,X]_]

Schema: combine with

Y
[XnIXZJ' . 5X1] .
empty small Solution

Schema: empty combine

[X1Xz,......xn] 2Xi 5 i:1>n with empty small Solution

L

e Example of rules:
= 1,916,81,121>1, 3, 4,9,11-> combine.
= 1,12,15,4,3,2->37-> combine.
= 11, 20,21,33,44->11, 20,21,33,44-> empty combine.
= 1,8,7,6,5>Null>empty combine
= 12,11,0,1,4->4,1,0,11,12-> combine / empty small solution.
= 100, 14,15,12,50->14->: empty combine / empty small solution

4.4.2 Problem specific algorithm meta model instantiation

Given a selection rule and the general meta model, the instantiation process will produce the
instance candidate for the given problem (Problem model).If specific instance is found, the

process will generate it. Otherwise the process will generate a general model (Figure 4-7).

37

Model rule and general

meata modelling

MetaModellinglnstantiation(ModelRule, genralMMI)
Search in Input/output Data { .

general meta Boolian A
modelling A=Search(rule, generalMM);

!
GenerateSpcificModel();

Find YES
Model Else
NO {
Generate Generate GenerateDefualtModel();

Process IF (A)

Default specific }
Model Model Legend }

Figure 4-7. Problem specific algorithm meta model instantiation and process, using flow

charts.

e Example:

DEC (Pb_D, Salution)
{

If (small case) then small solution;

Combine f prDCEd ure Else {// Divide the problem into sub problems;

Figure 4-6

General Meta Modelling

— Problem specific

algorithm meta model

— instantiation

D&C [Partl, Sub Soll);
D&C (Part2, Sub Sol2);

D&C (Parth, Sub SalN);
Combine |3ub Soll, 3ub Sol2,..., Sub SolN);

Combine

Figure 4-8. Problem specific algorithm meta model instantiation Example.

(Figure 4-8) presents example of problem specific algorithm meta model instantiation. The
process will take selection rule (combine/procedure, obtained in Figure 4-6) and general meta

model, the process will generate the suitable model (combine, obtained in Figure 4-8).
4.4.3 Problem specific algorithm variability parameters fixing

This process identifies the variable fields which are the instance parameters for which the

user should provide values (Figure 4-9).

38

Input Problem Model
ProbleminstantiationData(ProblemModel)

1 Input/output Data {

Identify the
empty IdentifyTheEmptyVariableField();

variable field Proposed ProblemDataForVariableField();
Process Output problem data;

Proposed }
problem data

for variable Legend
field

1

Out put problem data

Figure 4-9. Problem specific algorithm variability parameters fixing and process, using flow

charts.
o Example:
DE&C (Pb_D, Solution)
{
If [smzll caze) then small solution;
Else {// Divide the problem inta sub problems; algorithm name = sum;
DE&C (Partl, Sub Sol1); Problem SpECifiC Pb-O =¥ left, right;
D&C (Fart2, Sub 5al2); smazll cazsel = left = right
algnrlthm \rarlablllty small solutionl < array[left]+aray[right];
DE&C (PartN, 5ub SolN); pal‘al‘nE‘tEl‘S fiHir‘Ig smallcasez-—}leﬂ = right-1;
Combine {Sub Sol1, Sub Sol2,..., Sub SalN); small solution2 = array(left]};
} Problem Data
i
Combine (Figure 4-8)

Figure 4-10. Problem specific algorithm variability parameters fixing Example.

(Figure 4-10) presents example of problem specific algorithm variability parameters fixing.
The user will identify the fixed parameters (problem data) for selection model (combine,
obtained in Figure 4-8), the process will take the variable fields from user:
algorithm name—>sum;

Pb-D->left, right;
small casel - left = right
small solutionl - array[left]+array[right];
small case2 > left = right-1;
small solution2 = array[left]);
After the user provides the value, the problem specific algorithm variability parameters fixing
process will send the value (in Figure 4-10) to problem specific algorithm process.

444

39

Problem specific algorithm

This process fills the variable fields of an instance by the user fixed parameters textual values

(Figure 4-11).

Problem data and
problem Model
|

Fill value by
given
problem data

1
Generate divide
and conguer
instance
algorithm

Modellnstantiation(ProblemData, ProblemModel)

FillValueByGivenProblemData();
GenerateDivideAndConquerlnstanceAlgoritm();

Input/output Data {
Process

}
Legend

Figure 4-11. Problem specific algorithm and process, using flow charts.

e Example:

algorithm name = zum;
Pb-O = left, right;
smazll casel = left = right
smiall salutionl - array[left]+array[right];
smzll caze? 3left = right-1;
small solution = array|left]);
Problem Data (Figure 4-10)

DE&C (Pb_D, 3olution)
i
If {small caze] then small salution;
Else {/{ Divide the problem inta sub problems;
D&C [Partl, Sub Soll);
DE&C [Part2, Sub Sol2);

DEC [Parth, Sub SolN);
Combine (3ub Sall, S5ub 3al2,.., Sub SalM);

Combine [Figure 4-8)

v

problem specific
algorithm

v

sum {left, right, solution)

{

int salutiond, soltuionZ, m;
if (left=right] then sclution array [left] = array [right];
2lse if [left=right-1) then sclution array [left];
else |
m=(left + right}/2;
sum (left, m, solutionl);
sum [m+1, right, solution2};
Combine (solutionl salution2];

Sum algorithm by divide and conguer

Figure 4-12 Problem specific algorithm Example

(Figure 4-12) presents example of problem specific algorithm. The process will fill the fixed

parameters (obtained in Figure 4-10):

algorithm name—>sum;
Pb-D->left, right;
small casel > left = right

small solutionl - array[left]+array[right];

small case2 —>left = right-1,;

small solution2 - array[left]);

40

After filling the parameters of an instance (combine, obtained in Figure 4-8) then it will

produce sum algorithm by divide and conquer (obtained in Figure 4-12).

4.5 Discussion

This thesis has designed a methodology for D&C method. This methodology is based on
meta modelling D&C variability and on an instantiation process according to problem soecific
requirements. The formalization of this methodology by meta modelling well known languages
(UML and FD) has proved the non-suitability of UML to Text architectures modelling, whereas
the FD was stated very adapted to.

CHAPTER FIVE: IMPLEMENTATION ISSUES,
APPLICATION AREAS AND PERSPECTIVE

42

5.1 Introduction

This chapter discusses the following views of the thesis contribution: The first point deals
with implementation issues, the second point deals with the application areas of that
contributions, the third point deals with evaluating the contribution by comparing it with relevant

works, and finally it presents a conclusion and future possible works.

5.2 Implementation issues

No specific requirements in programmed environment and skills are required.
5.3 Application areas

Divide and conquer method will be strengthened by using meta modelling concept, it will
add higher general abstraction and generate instance easily.

The proposed methodology may be used in all dimensioned problem solving, having
variation parameters from one to another.
5.4 Evaluation

This section starts by comparing some relevant related works with this thesis
contribution, based on some identified relevant criteria. It ends by evaluation UML and DF
regarding their suitability to variable textual architectures meta modelling. Bellow supporting
concept example in Table 5-2, and the Symbol using: % this means not supported.

Table 5-1. Divide and congquer meta modelling concept

Concept Example of supporting works ~ Thesis concept supporting

Apply meta model concept to
Divide and conquer meta x divide and conquer method.
model
Represented divide and
Divide and conquer model (Francés, 1998) conquer cases by Feature
Model.
A schema product from
Divide and conquer instance (Rahmani, 2010). divide and conquer model.

schema

N _ There is a technique to
Divide and conquer instance x generate divide and conquer
algorithm instance algorithm.

43

Comparison with similar works: through reading the literature (Francés, 1998; Rahmani,

2010), there are many evaluation criteria:

1. Methodology. Actually, there is no methodology for divide and conquer meta
modelling. This thesis proposes a methodology for it.

2. General Abstraction. There is a fixed and operational design pattern in (Francés,
1998) and Sorting Algorithms operational framework model in (Rahmani, 2010).
This thesis proposes a general and variable textual metamodel covering broad

classes of problems

3. Modelling Languages. The current works, which are limited to operational Divide
& Conquer model (one abstraction level) uses UML (Object-Oriented operational
modelling language) which is very suitable for this abstraction modelling level.
This thesis proposes a meta model with several abstraction levels, each one deals
with a variability parameters in Divide and Conquer. This kind of variability
requires text-based meta modelling languages rather than operational languages.
So, the use of FDL (which is abstractions multi layered and text-based) revealed
to be very suitable, whereas UML was ineffective.

4. Instantiation Process. No, instantiation Processes were proposed in the current
research works in this domain, this thesis proposes, as part of its Divide &
Conquer metamodeling methodology, a process for this important task, with all its

needed mechanisms.

Bellow a comparison represented in Table 5-2, and the Symbol using: v'v" means complete

support, v means partial support, and ¥ means not support.
Table 5-2. Comparison between related work and thesis contribution
Concept Francés 1998 Rahmani 2010 thesis contribution

Methodology

Feature diagram

Abstraction general

44

UML v v x

Generate Instance x x vv

e Compare between UML and feature diagram

A D&C variability meta model was presented by FD and by UML. FD meta model has
proved powerful capability in representation and instantiation. Whereas UML use has proved its
inefficiency for textual meta modelling: (1) there is no textual instantiation by specializing a
textual model to another, (2) no “or” relation in UML class diagram notation. (3) In class
diagram all attributes and operations in primary class will be contained in children classes, this
inheritance is not needed in meta modelling. And (4) The attributes and operations do not change
from class to another in class diagram. So each child class will contain new text as attribute,

generated from the ancestor’s classes.

5.5 Conclusion: perspectives and future works

This thesis has achieved many contributions. The first consists of a methodology guiding
algorithms design by D&C. The second deals with meta modeling D&C variability and
formalizing the variability parameters with UML and FD. The third deals with a process guiding
the instance algorithm generation. Finally, UML was evaluated to be inappropriate for this kind
of meta modeling. This research leaded to the following open problems:

1. The contribution of this thesis is limited to problems having fixed dimensions. A
huge number of problem classes are dimension free. Their meta modelling will be

very valuable.

2. The combination of Divide & Conquer meta models for dimensioned problems and

non-dimensioned ones will be appreciated.

3. The evaluation of the complexity of the proposed methodology (and generally of
open layered Meta modelling techniques) relative to limited layers one is a key

point in this domain.

45

4. The UML generalization study to support text-based modelling may lead to its

innovation.

46

References

Byrne B.M., Yasser Shahzad Qureshi, (2013). THE USE OF UML CLASS DIAGRAMS TO
TEACH DATABASE MODELLING AND DATABASE DESIGN. Higher Education
Academy.

Chow C., Tsong Yueh Chen, T.H. Tse, (2013). The ART of Divide and Conquer: An
Innovative Approach to Improving the Efficiency of Adaptive RandomTesting. Proceedings
of the 13th International Conference on Quality Software (QSIC).

Clark T., Andy Evans, Paul Sammut, JamesWillans, (2008). APPLIED METAMODELLING A
FOUNDATION FOR LANGUAGE DRIVEN DEVELOPMENT. SECOND EDITION.
Ceteva 2008.

Ehrig K., Jochen Malte Kiister, Gabriele Taentzer, (2009). Generating instance models from meta
models, Software & Systems Modeling, Volume 8, Issue 4, pp 479-500.

Francés J.G., Julio Garcia-Martin, Jose M. Burgos-Ortiz, Miguel Sutil-Martin,(1998). An Approach
to Algorithm Design by Patterns.

Giacomo G.D., Maurizio Lenzerini, Riccardo Rosati, (2011). Higher-Order Description Logics for
Domain Metamodeling. AAAL.

Gitzel R., T. Hildenbrand, (2005). A Taxonomy of Metamodel Hierarchies. University of Mannheim.

Hao Wu, Rosemary Monahan, James F. Power, (2012). Metamodel Instance Generation:A
systematic literature review CoRR abs/1211.6322.

Henderson-Sellers B., (2012). On the Mathematics of Modelling, Metamodelling, Ontologies and
Modelling Languages. Springer.

Hijma P., Rob van Nieuwpoort, Ceriel J. H. Jacobs, Henri E. Bal, (2011). Automatically Inserting
Synchronization Statements in Divide-and-Conquer Programs. IPDPS Workshops 1233-
1241.

Jin W., Bo Zhu,Xuanya Li, (2012). A Novel Pipelined Multiplier Using Divide and Conquer
Algorithm. International Conference on Industrial Technology and Management.

Kang K.C., Sholom G. Cohen, James A. Hess, William E. Novak, A. Spencer Peterson, (1990).
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Software Engineering Institute
Carnegie Mellon University Pittsburgh, Pennsylvania 15213.

http://link.springer.com/search?facet-author=%22Karsten+Ehrig%22
http://link.springer.com/search?facet-author=%22Jochen+Malte+K%C3%BCster%22
http://link.springer.com/search?facet-author=%22Gabriele+Taentzer%22
http://link.springer.com/journal/10270
http://link.springer.com/journal/10270/8/4/page/1
http://www.dblp.org/pers/hc/g/Giacomo:Giuseppe_De.html
http://www.dblp.org/pers/hc/l/Lenzerini:Maurizio.html
http://www.dblp.org/pers/hc/r/Rosati:Riccardo.html
http://www.dblp.org/db/conf/aaai/aaai2011.html#GiacomoLR11
http://www.dblp.org/pers/hc/w/Wu:Hao.html
http://www.dblp.org/pers/hc/m/Monahan:Rosemary.html
http://www.dblp.org/pers/hc/p/Power:James_F=.html
http://www.dblp.org/db/journals/corr/corr1211.html#abs-1211-6322
http://www.dblp.org/pers/hc/h/Henderson=Sellers:Brian.html
http://www.dblp.org/
http://www.dblp.org/pers/hc/h/Hijma:Pieter.html
http://www.dblp.org/pers/hc/n/Nieuwpoort:Rob_van.html
http://www.dblp.org/pers/hc/j/Jacobs:Ceriel_J=_H=.html
http://www.dblp.org/pers/hc/b/Bal:Henri_E=.html
http://www.dblp.org/db/conf/ipps/ipdps2011w.html#HijmaNJB11
http://www.dblp.org/db/conf/ipps/ipdps2011w.html#HijmaNJB11

47

Koripadu M., K. Venkata Subbaiah, (2014). Problem Solving Management Using Six Sigma Tools &
Techniques. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY
RESEARCH VOLUME 3, ISSUE 2.

K'uhne T., (2006). Matters of (Meta-) Modeling. Journal on Software and Systems Modeling,
Volume 5, Number 4, pp. 369-385.

Lopez-Ortiz A. , Alejandro Salinger, Robert Suderman, (2014). Toward a Generic Hybrid CPU-GPU
Parallelization of Divide-and-Conquer Algorithms. IPDPS Workshops 601-610.

Mateos C., Alejandro Zunino, Matias Hirsch, (2013). EasyFJP: Providing hybrid parallelism as a
concern for divide and conquer java applications. Comput. Sci. Inf. Syst. (COMSIS)
10(3):1129-1163.

Rahmani M., et al, (2010). A New Design Pattern for Sorting Algorithms. Proceedings of
NCSOFT.

Rebori MK., (1995). EFFECTIVE PROBLEM-SOLVIN TECHNIQUES FOR GROUPS.
UNIVERSITY OF NEVADA RENO.

Sprinkle J., Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai, (2010). Metamodelling State of

the Art and Research Challenges. Springer-Verlag Berlin Heidelberg.

Witherell P., Anantha Narayanan, JaeHyun Lee, (2011). Using Metamodels to Improve Product
Models and Facilitate Inferencing. ICSC 506-513.

vander W.M. P., (2012). Aalst: A General Divide and Conquer Approach for Process Mining. Fed
CSIS 2013:1-10.

Zhiyi M., Xiao He, Chao Liu, (2013). Assessing the quality of metamodels. Frontiers of Computer
Science (FCSC) 7(4):558-570.

Zuniga M. M, S. Kucherenko, N. Shah, (2013). Metamodelling with independent and dependent
inputs. Computer Physics Communications (CPHYSICS) 184(6):1570-1580.

http://www.dblp.org/pers/hc/l/L=oacute=pez=Ortiz:Alejandro.html
http://www.dblp.org/pers/hc/s/Salinger:Alejandro.html
http://www.dblp.org/pers/hc/s/Suderman:Robert.html
http://www.dblp.org/db/conf/ipps/ipdps2013w.html#Lopez-OrtizSS13
http://www.dblp.org/pers/hc/m/Mateos:Cristian.html
http://www.dblp.org/pers/hc/z/Zunino:Alejandro.html
http://www.dblp.org/pers/hc/h/Hirsch:Mat=iacute=as.html
http://www.dblp.org/db/journals/comsis/comsis10.html#MateosZH13
http://www.dblp.org/db/journals/comsis/comsis10.html#MateosZH13
http://www.dblp.org/pers/hc/w/Witherell:Paul.html
http://www.dblp.org/pers/hc/n/Narayanan:Anantha.html
http://www.dblp.org/pers/hc/l/Lee:JaeHyun.html
http://www.dblp.org/db/conf/semco/icsc2011.html#WitherellNL11
http://www.dblp.org/pers/hc/h/He:Xiao.html
http://www.dblp.org/pers/hc/l/Liu:Chao.html
http://www.dblp.org/db/journals/fcsc/fcsc7.html#MaHL13
http://www.dblp.org/db/journals/fcsc/fcsc7.html#MaHL13
http://www.dblp.org/pers/hc/z/Zuniga:M=_Munoz.html
http://www.dblp.org/pers/hc/k/Kucherenko:S=.html
http://www.dblp.org/pers/hc/s/Shah:N=.html
http://www.dblp.org/db/journals/cphysics/cphysics184.html#ZunigaKS13

APPENDIX

49

The appendix explains, a scenario for the methodology introduced in page 25 (Figure 4-1).

1. Divide and Conguer meta model

In the beginning, by applying meta model technique that is applied on divide and conquer

method the Figure 1 is obtained.

MO Divide and Conguer

Meta- meta model LT
.~ Instance
M1 D&C—No Dimension D&C-With Dimension
=T
Meta model ety
.- _.-“Instange
Coml;i;r'w;e Combine with Empév Empty Combine with
M2 Empty Smfll Case Combine EMPLY Small Case
Model H i ? ?
Instance Instpnce Instance Instance

M4 . : |

Instance Sum,... Sart,.. Read, Search,.... BFS,DFS, ...

Figure 1. Divide and conquer by meta model technique.

The above divide and conquer meta model (Figure 1), is represented by feature diagram

notations as in (Figure 2-A, Figure 2-B).

Meta-meta model Congquer

Combine

Model With empty With empty

Small solution Small solution

_______ e S L. .- S e e Zoomed Procedure/F
Instan e in out unction
g 2 4 4.8
- -~] [[]
O=r

calcal[ca|ca
Ha jju2 j{nafn2
Cal

ca
1 IN

ca
112

ca
1

ca
112

ca
1

ca
112

MANDATOR PTI AL ALTERNATIVE
ca ¢] ATORY OPTION (\

a
11 jn2

Figure 2-A. Divide and conquer with combine by feature diagram.

50

D&C (Problem, Solution)

{
Divide the problem into sub problems;
Solve each sup problems;
Combine the solutions;

}
Divide and Conquer
[
\
- \
?&C (Parameter, Solution) \ D&C (Pb_Dimension, Solution)
\
. {
Divide the problem as current state \‘ Divide the problem into N parts;
gii EEQK; :“: :":2 \ D&C (Part1, Sub Sol1);
art2, Sub Sol2); .
" \‘ ,' D&C (Part2, Sub Sol2);
~
. 7’
D&C (PartN, Sub SolN); o \ , D&C (PartN, Sub SolN);
Combine the solutions; \ ’ . I
) N N \ , Combine the solutions;
D&C without Dimensinn ! DR&C with Dimension
D&C (Pb_D, Solution) e
{ Memory A
If (small case) then small solution; ’ i
(L : . Model. 7 Wi D&C (Pb_D, Solution)
Else {// Divide the problem into sub problems; ’d ﬁ'“a”'”?: I
D&C (Part1, Sub Sol1); S If (current case in A) then Solution € Solution from A;
D&C (Part2, Sub Sol2); 4 Else {
T 0 I O o1 If (small case) then save small solution in A
D&C (PartN, Sub SolN); Else {// Divide the problem into sub problems;
Combine (Sub Sol1, Sub Sol2,..., Sub SoIN); D&C (Part1, Sub Sol1);
} D&C (Part2, Sub Sol2);
} D&C (Pb_D, Solution)
Combine { il 2 D&C (PartN, Sub SolN);
If (small case) then small solution; B \ Combine and save in A (Sub Sol1, Sub Sol2,..., Sub SolN);
Else {// Divide the problem into sub problems; \ }
Do in Parallel { \ }
D&C (Part1, Sub Sol1); \ }
D&C (Part2, Sub Sol2); \ ——
N I e tiam
D&C (PartN, Sub SoIN); ‘\
Combine (Sub Sol1, Sub Sol2, ..., Sub SoIN); \
} BV
) Al
} Memory A
Famhina Darallal D&C (Pb_D, Solution)
{
If (current case in A) then Solution € Solution from A;
Else {
If (small case) then save small solution in A
Else {// Divide the problem into sub problems;
Do in Parallel {
D&C (Part1, Sub Sol1);
D&C (Part2, Sub Sol2);
D&C (PartN, Sub SolN);
Combine and save in A (Sub Sol1, Sub Sol2,..., Sub SolN);
}
}
}
Combine memorization with parallel

Figure 2-B. Divide and conquer method with combine and Text.

(Figure 2-A) presents a Combine variation FD of D&C method. Combine coming from
dimension parameters. It consists of leaves (procedure or function) and many variations features
(with empty small case, parallel, memorization, memorization with parallel). Each variation ends

by leaves (procedure or function) with the number of call. The (Figure 2-B) shows the Combine
variations textual meta model.

51

2. Problem specific algorithm meta model selection request (by user)
The user gives a sentence that describes his problem. This sentence is converted into a
selection rule. If this conversion fails, the user may give an example which will be converted into

a selection rule. If still there is a failure, the system will produce a default rule (Figure 3).

s —
nm arkay Problem meta model

. p—) Combine / procedure
selection request

1,8,10,5,6 2330 =

Figure 3. Problem specific algorithm meta model selection request example

(Figure 3) presents example of problem specific algorithm meta model selection request. The
user will give a sentence (sum array) or an example (1, 8, 10, 5, 6 ->30), the process will

generate the suitable rule (combine/procedure).

3. Problem specific algorithm meta model instantiation

Given a selection rule (obtained in Figure 3) and the general meta model (Figure 2-B) the
instantiation process will produce the instance candidate for the given problem (Problem model).
If specific instance is found, the process will generate it. Otherwise the process will generate a

general model.

D&C (Pb_D, Salution)

{

. If {small case) then small solution;
Comblge j pr;)CEd ure Else {/{ Divide the problem inta sub problems;

Igure [r— Problem specific gzg {iaz; z”: 20:;}

artZ, Sub 5ol2);

algorithm meta mode| |—t-
H — instantiation DE&C [Fart, Sub SalM);
General _METB Modelllng Combine (3ub Soll, Sub 5012, Sub SolN);
Figure 2-B }
i

Combine

Figure 4. Problem specific algorithm meta model instantiation example.
(Figure 4) presents example of problem specific algorithm meta model instantiation. The
process will take selection rule (combine/procedure, obtained in Figure 3) and general meta

model (Figure 2-B), the process will generate the suitable model (combine, obtained in Figure 4).

52

4. Problem specific algorithm variability parameters fixing (by user)
This process identifies the variable fields which are the instance parameters for which the user

should provide values (Figure 5).

DEC (Pb_D, Solution)
{

If (smzll caze) then small salutian;

Else {// Divide the problem into sub problems; algorithm narme = sum;

o | Poblem speciic || mm
algorithm variability

small solutionl - array[left]+array|right];

DE&C (PartM, Sub SolN); Paﬁm&ters flmng srnzll casez-—)lef't =right-1; .
Combine (Sub Soli, Sub Sol2, ..., Sub SalN); small solution2 = array[left]);
} Problem Data
1
Combine (Figure 4)

Figure 5. Problem specific algorithm variability parameters fixing example.

(Figure 5) presents example of problem specific algorithm variability parameters fixing. The
user will identify the fixed parameters (problem data) for selection model (combine, obtained in
Figure 4), the process will take the variable fields from user:
algorithm name—>sum;

Pb-D->left, right;

small casel - left = right

small solutionl - array[left]+array[right];

small case2 - left = right-1,;

small solution2 - array[left]);

After the user provides the value, the problem specific algorithm variability parameters fixing

process will send the value (in Figure 5) to problem specific algorithm process.

5. Problem specific algorithm

This process fills the variable fields of an instance by the user fixed parameters textual values
(Figure 6).

algorithm name = sum);
Po-D = left, right;
smazll casel = left = right
small solution] 3 arrzy[left[+array(right];
small caze? —*left = right-1;
small solution2 < array[left]);
Problem Data [Figure 5)

53

D&C (Pb_D, Solution)
{
If (small caze] then small solution;
Else {// Divide the problem into sub problems;
DE&C [Partl, Sub Soll);
DE&C [Part2, Sub Sol2);

D&C (Part, Sub Soll];
Combine (3ub 3oll, Sub 3012,..., Sub SolNj;

Combine (Figure 4)

!

problem specific
algorithm

sum {left, right, solution)

{

int solutiond, soltuien, m;
if (left=right) then sclution array [left] = array [right];
else if [left=right-1) then solution array [left];
glse |
m=lleft + right}/2;
sum (left, m, solutionl);
sum [m#1, right, solution2];
Combine (sclution solution2);

Sum algorithm by divide and conguer

Figure 6. Problem specific algorithm Example

(Figure 6) presents example of problem specific algorithm. The process will fill the fixed

algorithm name—>sum;
Pb-D->left, right;
small casel > left = right

small case2 - left = right-1,;
small solution2 - array[left]);

parameters (obtained in Figure 5):

small solutionl - array[left]+array[right];

algorithm by dividing and conquer (obtained in Figure 6).

After filling the parameters of an instance (combine, obtained in Figure 4) then will produce sum

54

uadla

LK) pudall o sle ccliialy) i¥law sae 8 aodiud JSLEW s il (8 avaal gall pa) gaa) o8 2 ol
Aadlaall) s li€ Ciola Saill sy Ao siie Sl (55 § gaia 5o 430 Aaiilly) chusnigl) el 3l (43Vloe
Ala aa o Y OS] ddline OYlaa (8 Baaate COISEL da (A lgeadiu) AV sl g (A cdam) 6l Aadlaal) cday Hail)
485k aa oY (3) Dl poaill o aaTangie da oY (2) 2l and A8y 5l 8 ol Ja ale 235w (1) OY) (S
) aall Jadada 450K La i (o g IS Andaill Ll ALK Al j3 ade (4) Adime Al Aali 4sa))3 (adlASLY
O Adline AWlae ey Jabdi el alagy s 3 gase @lad e & jat) LSl ale 23 gai alag) Sl gl Jlae V) (ans
aadaill Al Jie dacty Slal cllad a5 Al g 32020 Silag) 8 Gela & 9 48) Aalall 4ndaill o geda) ZUsS
(RS 2 ad A4 jla A)yl sy Jiied o aaiad dagie 8 (8 g U g phal 8) jaal) Jadada g Bas gl
Aol Z3 il (e padae alhia Ja al g a5 Ll Aae) el g 48 5al) Andaill aladinly ¥laa Bae 8 Adliaa JSUS
Ll Graent 5y 5l il e g sil) 13l oaa el andaill 4a] (e |l i SS) i jaall Jalade) e Uloas aagil) b
Al ol B pla A alladl Gl it acal saa gall 4ndidl)

00'9’ — %éd-

éqDELPHuM
S aid A8y jh A) el Sl

Ao g9
Oualdd) acalad) 31758 daa)

da 0 o Jganll auhmfzus;usuuﬁ dIA Ciqad

Lidad) il jall 9 calad) Cual) 3alas

2014

	Dedication
	Acknowledgment
	(بسم الله الرحمن الرحيم وَمَا أُوتِيتُمْ مِنْ الْعِلْمِ إِلاَّ قَلِيلاً)

	Table of Contents
	List of Tables
	List of Abbreviations
	List of Figures
	Abstract
	CHAPTER ONE: INTRODUCTION
	CHAPTER TWO: RELATED WORK

	CHAPTER FOUR: A VARIABILITY META MODEL IN DIVIDE AND CONQUER METHOD
	CHAPTER FIVE: IMPLEMENTATION ISSUES, APPLICATION AREAS AND PERSPECTIVE
	Divide and conquer method will be strengthened by using meta modelling concept, it will add higher general abstraction and generate instance easily.
	The proposed methodology may be used in all dimensioned problem solving, having variation parameters from one to another.
	This section starts by comparing some relevant related works with this thesis contribution, based on some identified relevant criteria. It ends by evaluation UML and DF regarding their suitability to variable textual architectures meta mo...
	Table 5-1. Divide and conquer meta modelling concept
	References

	تمثيل التغيرات في طريقة قسم تسد
	بواسطة
	احمد فؤاد الجاسم السلطان
	بإشــراف
	أ.د. سـعـيد الغول
	قدمت هذه الرسالة استكمالاً لـمـتطلبات الحصول على درجة
	الــمـاجـسـتير في عـلـم الـحـاسـوب
	عـمـادة البحث العلمي والدراسات العليا
	جامعة فيلادلفيا
	2014

