

Variability modelling in divide and conquer method

By

Ahmad Fouaad AL-Jassim AL-Sultan

Supervisor

Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfilment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

2014

II

فيلادلفيا جامعة

تفويض نموذج

 أو المؤسسات أو للمكتبات رسالتي من نسخ بتزويد فيلادلفيا جامعة أفوض ، السلطان الجاسم فؤاد احمد أنا

 .طلبها عند الأشخاص أو الهيئات

 : التوقيع

 : التاريخ

Philadelphia University

Authorization Form

I am, Ahmad Fouaad Aljassim Alsultan, authorize Philadelphia University to supply

copies of my thesis to libraries or establishments or individuals upon request.

Signature:

Date:

III

Variability modelling in divide and conquer method

By

Ahmad Fouaad AL-Jassim AL-Sultan

Supervisor

Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfilment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

2014

IV

Successfully defended and approved on _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Examination Committee Signature Signature

Dr. , Chairman. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , External Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

V

Dedication

 First of all I thank Allah the almighty for giving me the strength and knowledge to finish

this work, I dedicate this work to my family my father, My mother, My brothers, My sisters

and my uncles, also to my friends, they’ve been there for me whenever I needed.

Ahmad fouaad alsultan

 2014

VI

Acknowledgment

(ال عِل مِ إلِاَّ قَليِلا مِن وَمَا أوُتيِتُم)بسم الله الرحمن الرحيم

 It would not have been possible to write this master thesis without the help and support

of the kind people around me, to only some of whom it is possible to give particular mention

here.

 Above all, I would like to express my thanks and sincere gratitude for who has guided me

through my study and my thesis work; my supervisor prof. Said Ghoul, for giving the wisdom,

strength, support and knowledge in exploring things.

 I would like to thank my family members; My father, My mother, brothers, sisters, uncles

and my friends for giving me their unequivocal support throughout, as always, for which my

mere expression of thanks likewise does not suffice.

 Also, I am grateful for those who supported me and encouraged me in any way; my

teachers at Philadelphia University.

 Ahmad Fouaad Alsultan

 2014

VII

Table of Contents

Subject Page

Dedication V

Acknowledgment VI

Table of Contents VII

List of Tables X

List of Abbreviations X

List of Figures XI

Abstract XIII

CHAPTER ONE: INTRODUCTION 1

 1.1 Preface 2

 1.2 Research Context 3

 1.3 Problem Statement 4

 1.4 Motivation 4

 1.5 Contributions 4

 1.6 Thesis layout 5

CHAPTER TWO: RELATED WORK 6

 2.1 Introduction 7

 2.2 Divide and conquer current modelling approaches 7

 2.3 Meta model concepts 10

 2.4 Meta Modelling languages 12

 2.5 Thesis motivation 14

CHAPTER THREE: DIVIDE AND CONQUER VARIABLE CASES 15

 3.1 Introduction 16

 3.2 Divide and conquer general pattern 16

VIII

 3.2.1 without dimension 16

 3.2.2 with dimension 17

 3.3 Divide and conquer method specializations 18

 3.3.1 Divide and conquer with empty small solution 18

 3.3.2 Divide and conquer with empty combine 19

 3.3.3 Divide and conquer empty combine with empty small solution 20

3.3.4 Divide and conquer with parallelism
21

3.3.5 Divide and conquer with memorization
22

CHAPTER FOUR: A VARIABILITY META MODEL IN DIVIDE AND

CONQUER METHOD 24

 4.1 Introduction 25

 4.2 A methodology for designing algorithms variability by divide and conquer 25

 4.3 Divide and Conquer Algorithms Variability Meta Modelling Phase 26

 4.3.1 Divide and conquer meta modelling by Feature Diagram 26

 4.3.2 Divide and conquer meta modelling by UML 31

 4.4 Problem Specific Algorithm Instantiation Phase 33

 4.4.1 Problem specific algorithm meta model selection request 33

 4.4.2 Problem specific algorithm meta model instantiation 36

 4.4.3 Problem specific algorithm variability parameters fixing 37

 4.4.4 Problem specific algorithm 39

 4.5 Discussion 40

CHAPTER FIVE: IMPLEMENTATION ISSUES, EVALUATION, APPLICATION

AREAS AND PERSPECTIVE 41

 5.1 Introduction 42

 5.2 Implementation issues 42

IX

 5.3 Application areas 42

 5.4 Evaluation 42

 5.5 Conclusion: perspectives and future works 44

References 46

Appendix 48

 54 ملخص

X

List of Tables

Table Number Table Title Page

5-1 Divide and conquer meta modelling concept 42

5-2
Comparison between related work and thesis

contribution
43

List of Abbreviations

Abbreviation Full Name

MM Meta Model

UML Unified Model Language

FD Feature Diagram

D&C Divide and Conquer

BNF Backus–Naur Form

XI

List of Figures

Figure Number Figure Title Page

Figure ‎1-1 Divide and conquer method 2

 Figure ‎2-1 Structure of divide and conquer 7

 Figure ‎2-2 Sum array in divide and conquer 8

 Figure ‎2-3 Framework unifying different sorting algorithms 9

 Figure ‎2-4 Quick sort algorithm 9

Figure ‎2-5 Meta model layers 10

Figure ‎2-6 Meta Modelling divide and conquer 11

Figure ‎2-7 Relation between feature diagrams 12

Figure ‎2-8 The model divide and conquer with combine case 13

Figure ‎2-9 Relation between classes in UML 13

Figure ‎2-10 Divide and conquer model by UML 14

Figure ‎3-1 Divide and conquer without dimension 16

Figure ‎3-2 Read tree by divide and conquer without dimension 16

Figure ‎3-3 Divide and conquer with dimension 17

Figure ‎3-4 Sum by divide and conquer method 17

Figure ‎3-5 Divide and conquer without small solution 18

Figure ‎3-6 Sorting by divide and conquer method 19

Figure ‎3-7 Sorting by divide and conquer method 19

Figure ‎3-8 Read by divide and conquer method 20

Figure ‎3-9 Divide and conquer empty combine without small solution 20

Figure ‎3-10 Read regular tree by divide and conquer algorithm 21

Figure ‎3-11 Divide and conquer with parallel 21

Figure ‎3-12 Divide and conquer with parallel 22

Figure ‎3-13 Divide and conquer with memorization 22

Figure ‎3-14 Factorial by divide and conquer with memorization 23

Figure ‎4-1 Divide and Conquer Meta Modeling methodology 25

Figure ‎4-2 Divide and conquer by meta model technique 26

Figure ‎4-3-A Divide and conquer method with combine and Text 27

Figure ‎4-3-B

Divide and conquer method with combine with empty small
Solution and Text

28

Figure ‎4-3-C Divide and conquer method with empty combine and Text 29

Figure ‎4-3-D

Divide and conquer method with empty combine with empty

small Solution and Text.

31

Figure ‎4-4 Divide and conquer model by UML 32

Figure ‎4-5 Instantiation phase, using Data flow Diagram 33

XII

Figure ‎4-6

Problem specific algorithm meta model selection request,

using flow charts.

 33

Figure ‎4-7

Problem specific algorithm meta model instantiation, using

flow charts.
37

 Figure ‎4-8

Problem specific algorithm meta model instantiation

Example.
37

Figure ‎4-9

Problem specific algorithm variability parameters fixing,

using flow charts. 38

Figure ‎4-10

Problem specific algorithm variability parameters fixing

Example. 38

Figure ‎4-11

Problem specific algorithm, using flow charts. 39

Figure ‎4-12

Problem specific algorithm Example 39

XIII

Abstract

Divide and Conquer (D&C) is a very broad problem solving pattern, used in several areas:

mathematics, computer science, physics, engineering, etc. Consequently it constitutes an active

topic for varied researches. Some researches deal with the approach enhancements

(parallelization, distribution, adaptation, etc.). Others deal with its application to solve various

problems in different application domains and its evaluation. But despite this active and intense

research, until now: (1) no general D&C method variability meta model, that covers several

classes of problems in different domains, (2) no formal methodology supporting this variability,

(3) no formal problem specific variation selection and instantiation process, and (4) no

modelling languages suitable features have been proposed.

However, rare patterns for specific problems were developed. Developing a broad divide and

conquer pattern requires the application of abstraction techniques where the meta modelling is

the best candidate. Its intensive and continuous enhancement researches, power, broad use, and

formalization capacities with its supporting languages like the Unified Modelling Language

(UML) and Feature Diagram (FD), make it an effective model at the top rank.

This thesis, aims to overcome the above four D&C researches insufficiencies by proposing a

rich and general D&C method development methodology based on variability modelling in

D&C method and on a formal variation selection and instantiation process. Obtained result

states clearly the suitability of FD formalism instead of UML for this kind of meta modelling

and identifies UML possible enhancement that may generalize it to support methods variability

meta modelling.

CHAPTER ONE: INTRODUCTION

2

1.1 Preface

 Problem solving (Koripadu, 2014; Rebori, 1995) is one of the important process in

computer science domain. Problem solving has many steps defining solving process model: the

first step is defining the problem. The second step is identifying and defining a root case. The

third step is generating alternative solutions. The four step is evaluating the alternatives. This

Problem solving model has been used for variable problems.

 Divide and conquer is one of the applications of problem solving methods. (Figure 1-1) it

is a very broad problem solving pattern practically used in all complex scientific areaes:

mathematics, computer science (in all area), physics, engineering, etc. It processes by recursively

braking the problem into sub problems until reaching small cases for which small solutions exist,

then combining these solutions in a way to carry out the complete solution (Chow, 2013; vander,

2012). Consequently, it constitutes an active challenging topic for varied researches (Lopez-

Ortiz, 2014; Jin, 2012; vander, 2012).

 Many problems in computer science can be solved iteratively or recursively. Divide and

conquer is a recursive method defying a general design pattern from which specific problem

solving might be generated.

 Scarce research works have been conducted in divide and conquer meta modelling. An

earlier attempt has used a design pattern technique for the most general divide and conquer

model (Francés, 1998). Later, the Unified Modelling Language (UML) has been used for

modelling sorting algorithms (Rahmani, 2010) but no one general Divide and Conquer Meta

model, that covers several classes of problems in different domains, has been yet proposed.

Figure 1-1. Divide and conquer method.

3

 Divide and conquer design pattern may vary from one problem to another and modelling

this variability is a challenge in the domain. Developing a broad divide and conquer pattern

requires the application of abstraction techniques where the meta modeling (Gitzel, 2005;

K¨uhne, 2006; Williams, 2013; Zuniga, 2013) is the best candidate. Effectively, a metamodel is a

general abstraction from that other more specialized abstractions (Ehrig, 2009) and specific

instances (Hao Wu, 2012) may be generated. Its intensive and continuous enhancement

researches (Sprinkle, 2010), capabilities (Ma, 2013; Witherell, 2013), and formalization

capacities (Henderson-Sellers, 2012; Giacomo, 2011), and its supporting languages like UML

(Byrne, 2013) and feature diagrams (Kang, 1990), make it at the top rank.

1.2 Research Context

 The idea of this thesis is to develop a meta model for divide and conquer. So its research

context is about meta modelling, and divide and conquer methods.

 Some researches deal with the divide and conquer approach enhancement (Lopez-Ortiz,

2014; Mateos, 2013; Hijma, 2008). These enhancements were generally proposed for supporting

features like parallelization, distribution, synchronization, and more specific problem constraints.

These related enhancements were separately developed but were not modelled in a structured

abstract way, illustrating relations between them and allowing more effectiveness,

comprehension, and reuse for building furthers ones. However some specific design pattern were

presented (Francés, 1998; Rahmani, 2010).

 A design pattern was presented by Javier and Julio (Francés, 1998), this design pattern

does not deal with variability in problems, it is only a fixed method defined with UML notation.

 An object oriented framework was presented by Rahmani and his colleagues (Rahmani,

2010) for modelling variability of sorting algorithms. All sorting algorithms are instances of the

class “Asorter” only by defining the functions Split and Join. This framework is limited to

sorting problems. So, it doesn’t deal with variability of problems, but it is a specialized and

limited case of a broad divide and conquer method.

http://www.dblp.org/pers/hc/m/Ma:Zhiyi.html
http://www.dblp.org/pers/hc/w/Witherell:Paul.html
http://www.dblp.org/pers/hc/h/Henderson=Sellers:Brian.html
http://www.dblp.org/pers/hc/g/Giacomo:Giuseppe_De.html

4

1.3 Problem Statement

 From previous works, there are many challenges that might be defined:

 Methodology: there are many general patterns for divide and conquer method but they

do not have methodology guiding their use.

 Meta modelling divide and conquer: the general pattern does not address variable

cases such as empty combine, parallels or sequential schemas, empty small solutions,

memorization, etc.

 Formalization: The used modelling notation in previous works is a Unified Language

Model (UML) notation without adaptation evaluation. There are other languages in

meta modelling that may be used in this case like Feature Diagram (FD).

 Instantiations process: there is not process to define instance of general pattern in

actual divide and conquer method general pattern.

1.4 Motivation

 The proposed research in this thesis was motivated by the following:

 Absence of a methodology that guides divide and conquer problem solving method.

 Absence of a broad meta modelling that deals with large cases of divide and conquer

method.

 The limitation of the used notation to UML.

 Absence of instantiations process to generate instance from the divide and conquer

general pattern.

1.5 Contributions

 This work aims at designing a divide and conquer methodology based on a broad meta

modelling:

 Providing a methodology to support general pattern divide and conquer method meta

modelling.

5

 Designing a broad divide and conquer method based on meta modelling technique

leading to a high abstraction meta model.

 Using UML and Feature Diagram as research and evaluate the adaptability of each

one.

 Proposing a technique process for generating instance algorithm, specific to problem

solving from the proposed divide and conquer meta model.

1.6 Thesis layout

 The thesis starts with introducing the research problem in chapter one, related work

in chapter two, then representing divide and conquer variable cases in chapter three. The

proposed contributions solving some identified challenges in chapter four, and the

evaluation of the conducted research in chapter five. .

CHAPTER TWO: RELATED WORK

7

2.1 Introduction

This chapter presents some significant previous works in divide and conquer and introduces

concepts of Meta Modelling (MM), Unified Model Language (UML) and Feature Diagram (FD).

 Divide and conquer was approached by some researchers in the last years. Some had

researches dealt with the divide and conquer approach enhancement (Lopez-Ortiz, 2014; Mateos,

2013; Hijma, 2008). A Design pattern was presented by Javier and Julio (Francés, 1998), this

design pattern does not deal with variability in problems. An object oriented framework was

presented by Rahmani and his colleagues (Rahmani, 2010) for modelling variability of sorting

algorithms.

The Meta Modelling (MM) concepts are important domain of research: (1) in general

abstraction (Sprinkle, 2010; Hao Wu, 2012; Gitze, 2005), (2) in specialized abstractions, (3) in

supporting languages like UML (Byrne, 2013), and in Feature Diagrams (FD) (Kang, 1990).

This makes it at the top rank.

2.2 Divide and conquer current modelling approaches

Divide and conquer is a method of problem solving, it is a very broad problem solving pattern

practically used in all complex scientific areas.

 Two researches presented divide and conquer (Francés, 1998; Rahmani, 2010) with

specific model.

 Javier and Julio (Francés, 1998) presented a design pattern for a high abstract divide and

conquer, the structure of this design patterns, modelled with UML notations, is presented in

(Figure 2-1) (Francés, 1998).

Figure 2-1. Structure of divide and conquer.

8

 The schema (of divide and conquer) that composed of two components: (1) the Abstract

Problem, containing the definition of the small problems (Is Small), for which a direct solution

exist, and the composed problem (Divide), its solution which will be obtained from combining

solutions of smallest problems. (2) Abstract Solution contains the definition of small solution

associated with small cases sub-problems, and the definition of combine composing a global

solution for small cases solutions. The work also presents the use of UML interaction diagram,

and the sequence control in the schema. Specific algorithms solving particular problems, are

instantiated from this design pattern, by specifying the generic parts: IsSmall, Divide,

DirectSolution, Combine, sequence diagram.

 An example, the (Figure 2-2), presenting the sum of array elements.

Figure 2-2. Sum array in divide and conquer.

 However, this general design pattern does not specify cases where combine is empty, the

schema is parallel or sequential, top down or bottom up, domain specific, etc. So, the knowledge

reuse is poorly limited to the general structure of the design pattern.

 Rahmani and his colleagues (Rahmani, 2010) have presented an object oriented

framework for unifying different sorting algorithms as in (Figure 2-3) (Rahmani, 2010).

9

Figure 2-3. Framework unifying different sorting algorithms.

 All the sorting algorithms are instances of the class “Asorter” only by defining the

functions Split and Join. This framework is limited to sorting problems. This class is used in sort

case only, so it is not useful for others cases.

 An example, the (Figure 2-4), presenting the quick sort of array elements.

Figure 2-4. Quick sort algorithm.

10

2.3 Meta model concept

 Meta Modelling (MM) (Sprinkle, 2010) is a rule to represent the system or model in

general abstraction through using meta modelling language, and how to generate instance from

general model.

 A model is represented by meta model techniques (Sprinkle, 2010; Hao Wu, 2012;

Gitze, 2005), it is a powerful technique. A Meta Modelling was represented by four layers: the

first layer consists of meta-meta model that describe and define meta model layer. The second

layer consists of meta model that define language to describe model layer. The third layer

consists of model that. The fourth layer consists of instance from a model in the third layer as in

(Figure 2-5) (Sprinkle, 2010).

Figure 2-5. Meta model layers.

 Now will be explain the layers in meta model architecture (Clark, 2008):

 Meta-meta model layer: this layer describes the characteristic in meta model layer like

modelling languages.

 Meta model layer: this layer contains in language like UML, FD, classes, attributes, and

operations.

11

 Model layer: this layer contains application object-oriented system, and the table

definitions of a relational database.

 Instance layer: this is instance of object oriented class, instance of method or part of table

database.

 An example, the (Figure 2-6), presenting the divide and conquer Meta Modelling layers

for sorting example.

Figure 2-6. Meta Modelling divide and conquer.

 Meta Modelling (MM) has been approached in several domains (Hao Wu, 2012; Gitze,

2005) in software engineering using Meta Modelling (MM) to create high abstraction model and

presented systematic literature review of instance generation techniques for meta models.

12

 The Meta Modelling (MM) is approached by some modelling language like Unified

Model Language (UML) (Byrne, 2013) and Feature Diagrams (FD) (Kang, 1990).

2.4 Meta Modelling language

 Meta Modelling language is a tool for supporting the meta model technique in

representing the model. Some of these languages are Unified model language (UML) and

Feature diagram (FD).

 Feature Diagram

 Feature diagram (Kang, 1990) represents model as tree, this tree consists of the system’s

name at the top, and children for this system, whereas these children represent features.

 Feature diagram has a huge relationship (Kang, 1990) between the features. We will use

some relationship as in (Figure 2-7):

 Mandatory: this case means you must choose this child due to features.

 Optional: this case means you can choose this child or another child from features.

 Alternative: this case means you have multi children feature, you can choose only one

feature from them.

 Or: this case means you have multi children feature, you can choose one or all feature

from them.

 Feature Diagram (FD) (Kang, 1990) used in software product line easily representing

system.

Figure 2-7. Relation between feature diagrams.

 An example, the (Figure 2-8), presenting divide and conquer with combine case.

13

Figure 2-8. The model divide and conquer with combine case.

 Unified Model Language (UML)

 Unified Model Language UML (Byrne, 2013) represents model and system in

hierarchical form. There are many notation for representing model in UML that will support our

study. Class diagram consists of: class name, attributes and operations. The attributes consist of

global variable that will be used in the method, the operations consist of method from divide and

conquer.

 There are many relations (Byrne, 2013) between classes as in (Figure 2-9):

 Dependency: when a class needs data or information from another class.

 Association: when a class is connected with another class.

 Inherits: this relation connects father and son.

 Aggregation: this relation means multi class gives big relation.

Figure 2-9. Relation between classes in UML.

14

 An example, the (Figure 2-10), presenting divide and conquer by UML.

Figure 2-10. Divide and conquer model by UML.

2.5 Thesis Motivation

 From the previously mentioned, based on meta model technique, supporting language

like UML and FD and the research in divide and conquer method, this thesis is proposing general

divide and conquer by Meta modelling.

 This general model divide and conquer provides a methodology, that presents how to

build meta model for divide and conquer and provides process to generate instance from general

divide and conquer method.

CHAPTER THREE: DIVIDE AND CONQUER

VARIABLE CASES

16

3.1 Introduction

 Divide and conquer may be used for solving broad classes of problem. In this chapter,

several specific examples will be introduced for clarifying the problem. This example is among

the thesis contributions. In fact they are developed for the thesis proposes.

3.2 Divide and conquer general pattern

 The general case in divide and conquer works without dimension and with dimension.

3.2.1 Without dimension

This case means the problems will be divided irregularly into all programs steps (Figure 3-1).

Figure 3-1. Divide and conquer without dimension.

 (Figure 3-1) presents divide and conquer algorithm without dimension. The first step consists

of condition to stop divide problem, the second step divides problem into sub-problems as

requirement, the third step solves each sub-problem, and the fourth step combines all sub-

solutions.

 Example search in tree (Figure 3-2):

Figure 3-2. Read tree by divide and conquer without dimension.

17

 This example is a specific case in divide and conquer method without dimension. The

parameter in this case consists of Root that will read its children. The characteristics consist:

firstly of small problem (node!= null) and without small solution. Secondly it consists of divide

problem as child number. Thirdly it consists of sub problems (call same method) for new array

size. The divide will stop if (node = null).

3.2.2 With dimension

 This case means that the problems will be divided regularly into all programs steps (Figure

3-3).

Figure 3-3. Divide and conquer with dimension.

(Figure 3-3) presents divide and conquer algorithm with dimension (general case). The first

step consists of condition to stop divide problem, the second step divides problem into N part in

each algorithm circle, the third step solves each sub problem, and the fourth combines all sub

solutions.

 Example sum elements in Set (Figure 3-4):

Figure 3-4. Sum by divide and conquer method.

18

 This example is a general case in divide and conquer method with dimension. The

parameters in this case consists of dimensions (left, right) which means that the problem will be

divided into two parts, a solution means a result. The characteristics consist firstly of small

solution (left=right or lift=right-1) and small solution (sol=array [left] or sol=array [left] +array

[right]). Secondly it consists of divide problem. Thirdly it consists of sub problems (call same

method sum) for new array size. The divide will stop to small solution. Fourthly it consists of

combine, this characteristic means building solvation from previous one.

3.3 Divide and conquer method specializations

Many problems can use divide and conquer method, these problems differ from each other in

parameters and characteristics. Some problems don’t have small solution, while another do not

have combine to solve problem etc.

3.3.1 Divide and conquer with empty small solution

Divide and conquer with empty small solution will be presented in (Figure 3-5).

Figure 3-5. Divide and conquer without small solution.

(Figure 3-5) presents divide and conquer algorithm with empty small solution. The first step,

this algorithm does not have small solution but there is special condition to stop algorithm as

(find element and equal index, Etc.), the second step divides problem into (N) part in each

algorithm circle, the third step solves each sub-problem, and the fourth combines all sub

solutions.

 Example sorting algorithms may use divide and conquer method to sort items in a set.

Sorting algorithm has many methods to sort item as (quick sort, bubble sort, merge sort etc.). A

Rahmani presented sorting (Rahmani, 2010) model by UML as in (Figure 3-6).

19

Figure 3-6. Sorting by divide and conquer method.

 This example is a special case from general case, the parameters in this case are dimension

(low, high) which means that the problem will be divided into two parts. The characteristics in

this case differ slightly from those in the general case. Firstly there is not small solution (small

case low< high), it has small case but it doesn’t have small solution. Secondly it consists of

divide problem, here the used method (split) to divide problem, and the split method differs from

one method to another in sorting. Thirdly it consist of sub problems (call same method sort) for

new array size, the divide will stop if (low>=high). Fourthly it consists of combine, this

characteristic means building solvation by aggregation of elements in array.

3.3.2 Divide and conquer with empty combine

Divide and conquer with empty combine will present in (Figure 3-7).

Figure 3-7. Divide and conquer empty combine.

(Figure 3-7) presents divide and conquer algorithm with empty combine. The first step

consists of condition to stop divide problem, the second step divides problem into N part in each

algorithm circle, the third step solves each sub problem, and there is not combine because the

algorithm chooses one sub solution.

20

Example Read elements in Set (Figure 3-8):

Figure 3-8. Read by divide and conquer method.

 This example is a special case from the general case. the parameters in this case are

dimension (low, high) which means that the problem will be divided into two parts, and there are

many characteristics: Firstly of small case (left=right-1) and small solution (read array[left]).

Secondly it consists of divide problem. Thirdly it consists of sub-problems (call same method

Read) for new array size. Read method doesn’t contain combine characteristic because the

method does not interest in aggregation elements.

3.3.3 Divide and conquer empty combine with empty small solution

Divide and conquer empty combine without small solution in (Figure 3-9).

Figure 3-9. Divide and conquer empty combine without small solution.

(Figure 3-9) presents divide and conquer algorithm with empty combine empty small solution.

The first step, this algorithm does not have small solution but there is special condition to stop

algorithm as (find element and equal index, Etc.), the second step divides problem into N part in

each algorithm circle, the third step solves each sub problem, and there is not combine because

the algorithm choose one sub solution.

21

Example Search elements in Set (Figure 3-10):

Figure 3-10. Read regular tree by divide and conquer algorithm.

 This example is a special case from general case. There are one parameters (Root) which

means dividing the problem into two dimension, and there are many characteristics: Firstly of

small case (Node!=Null) without small solution. Secondly it consists of divide problem. Thirdly

it consists of sub problems (call method Read) to read the children. Read method does not

contain combine characteristic because the method needs read element.

3.3.4 Divide and conquer with parallelism

 The presence of multi process has been driven to think about the parallel case by divide and

conquer method (Lopez-Ortiz, 2014) in (Figure 3-11).

Figure 3-11. Divide and conquer with parallel.

(Figure 3-11) presents divide and conquer algorithm with parallel. The first step consists of

condition to stop divide problem, the second step divides problem into (N) part in each algorithm

circle, the third step solves each sub-problem and all sub-problem works in same time on

separately process, and the fourth combines all sub solutions.

22

Example Sum elements in Set with Parallel (Figure 3-12):

Figure 3-12. Sum in parallel by divide and conquer method.

 The new in example, parallel was used by divide and conquer method. When using parallel

the time will be faster for problems solution by divide and conquer. Divide and conquer can be

used in parallel with all previous cases.

3.3.5 Divide and conquer with memorization

 Sometimes divide and conquer uses to solve the same problem, instead of dividing the

problem into smallest case, memorization can be used to save the result. (Figure 3-13).

Figure 3-13.Divide and conquer with memorization.

(Figure 3-11) presents divide and conquer algorithm with memorization. The first step

searches in memory if find solution, the algorithm will stop. The second step consists of

condition to stop divide problem, the third step divides problem into N part in each algorithm

23

circle, the fourth step solves each sub problem, and the fifth combine all sub solutions and save it

in memory.

Example Factorial number with memorization (Figure 3-14):

Figure 3-14. Factorial by divide and conquer with memorization.

 Usually, memorization is used with static number because in every use the method will

repeat the same step. (Figure 3-14) using memory to save the result. The parameters (number)

the value is used to find factorial and (solution) to return result. This method will search in

memory to find the result stop method otherwise will divide problem and calculate the factorial.

 Divide and conquer can use memorization with all previous cases.

CHAPTER FOUR: A VARIABILITY META MODEL IN

DIVIDE AND CONQUER METHOD

25

4.1 Introduction

 This chapter presents the thesis contribution to the divide and conquer general

methodology, meta modelling by Feature Diagram (FD) and unified model language (UML), and

instance generating process.

4.2 A methodology for designing algorithms variability by divide and

conquer

 In the following, a divide and conquer meta modelling methodology design will be

introduced, the methodology defines the main activities and their coordination producing a

divide and conquer algorithm specific to a given problem. The main activities are: divide and

conquer meta modelling, problem specific algorithm meta model selection request, Problem

specific algorithm meta model instantiation, problem specific algorithm variability parameters

fixing, and Problem specific algorithm.

Figure 4-1. Divide and Conquer Meta Modeling methodology, using Data flow Diagram.

 This methodology has scenario in appendix to explain mechanism of action this

methodology by example.

 The first step is providing a general meat modelling for divide and conquer. The second

step consists of two phases: (1) problem meta model selection request for determining a user

specific for a given problem. (2)Meta Modelling instantiation that produces a specific meta

modelling for the given problem. The third step produces divide and conquer instance algorithm

by filling the variable parts in the selected metamodel for the fixed problem, these parameters

were provided by the user. In the following, details of each methodology will be presented.

26

4.3 Divide and Conquer Algorithms Variability Meta Modelling Phase

 The D&C variability meta model is shown in (Figure 4-2). The first layer consists of meta-

meta model. The second layer consists of meta model which presents divide and conquer having

dimension and divide and conquer without dimension. The third layer consists of model which

presents (Combine, Combine with empty small case, Empty Combine and Empty Combine with

Empty small case). The fourth layer consists of instance presenting the algorithm model from

layer three (example sum, sort, read, BFS, DFS and etc. (Figure 4-2).

Figure 4-2. Divide and conquer by meta model technique.

4.3.1 Divide and conquer meta modelling by Feature Diagram

 In this section, The above D&C meta model (Figure 4-2), will be summary formalized

by feature diagram notations (Figure 4-3-A, Figure 4-3-B, Figure 4-3-C, Figure 4-3-D). D&C

method variations modelling study for problems without dimension is out of scope of this thesis.

27

Figure 4-3-A. Divide and conquer method with combine and Text.

 (Figure 4-3-A) presents a Combine variation FD of D&C method. Combine came from

dimension parameters. It consists of leaves (procedure or function) and many variations

features (with empty small case, parallel, memorization, memorization with parallel). Each

variation ends by leaves (procedure or function) with the number of call. The (Figure 4-3-A)

shows the Combine variations textual meta model.

D&C (Problem, Solution)

{

 Divide the problem into sub problems;

 Solve each sup problems;

 Combine the solutions;

}

Divide and Conquer

D&C (Pb_Dimension, Solution)

{

 Divide the problem into N parts;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine the solutions;

}

D&C with Dimension

D&C (Pb_D, Solution)

{

 If (small case) then small solution;

 Else {// Divide the problem into sub problems;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine (Sub Sol1, Sub Sol2,…, Sub SolN);

 }

}

Combine

Memory A

D&C (Pb_D, Solution)

{

 If (current case in A) then Solution  Solution from A;

 Else {

 If (small case) then save small solution in A

 Else {// Divide the problem into sub problems;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine and save in A (Sub Sol1, Sub Sol2,…, Sub SolN);

 }

 }

}
Combine memorization

Memory A

D&C (Pb_D, Solution)

{

 If (current case in A) then Solution  Solution from A;

 Else {

 If (small case) then save small solution in A

 Else {// Divide the problem into sub problems;

 Do in Parallel {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine and save in A (Sub Sol1, Sub Sol2,…, Sub SolN);

 }

 }

}

Combine memorization with parallel

D&C (Pb_D, Solution)

{

 If (small case) then small solution;

 Else {// Divide the problem into sub problems;

 Do in Parallel {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine (Sub Sol1, Sub Sol2, …, Sub SolN);

 }

 }

}

Combine Parallel

D&C (Parameter, Solution)

{

 Divide the problem as current state

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine the solutions;

}

D&C without Dimension

28

Figure 4-3-B. Divide and conquer method with combine with empty small solution and Text.

 (Figure 4-3-B) shows combine with empty small solution variation FD of D&C method.

With empty small solution coming from combine, and combine coming from dimension

D&C (Pb_D, Solution)

{

 If (small case) then small solution;

 Else {// Divide the problem into sub problems;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine (Sub Sol1, Sub Sol2,…, Sub SolN);

 }

}

Combine
D&C (Pb_D, Solution)

{

 If (not small solution)

 {// Divide the problem into sub problems;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine (Sub Sol1, Sub Sol2,…, Sub SolN);

 }

}

Combine with empty small solution

D&C (Pb_D, Solution)

{

 If (not small solution)

 {// Divide the problem into sub problems;

 Do in Parallel {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine(Sub Sol1, SubSol2,…, Sub SolN);

 }

 }

}

Combine with empty small solution parallel

Memory A

D&C (Pb_D, Solution)

{

 If (current case in A) then Solution  Solution from A;

 Else {

 If (not small solution) {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine and save in A (Sub Sol1, Sub Sol2,…, Sub SolN);

 }

 }

}

Combine with empty small solution memorization

Memory A

D&C (Pb_D, Solution)

{

 If (current case in A) then Solution  Solution from A;

 Else {

 If (not small solution)

 {// Divide the problem into sub problems;

 Do in Parallel {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine and save in A (Sub Sol1, Sub Sol2,…, Sub SolN);

 }

 }

 }

}

Combine with empty small solution memorization with parallel

D&C (Problem, Solution)

{

 Divide the problem into sub problems;

 Solve each sup problems;

 Combine the solutions;

}

Divide and Conquer Meta-meta model

D&C (Pb_Dimension, Solution)

{

 Divide the problem into N parts;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine the solutions;

}

D&C with Dimension

D&C (Parameter, Solution)

{

 Divide the problem as current state

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine the solutions;

}

D&C without Dimension

29

parameters. It consists of leaves (procedure or function) and many variations features (parallel,

memorization, memorization with parallel). Each variation ends by leaves (procedure or

function) with the number of call. The (Figure 4-3-B) shows the combine with empty small

solution variations textual meta model.

Figure 4-3-C. Divide and conquer method with empty combine and Text.

D&C (Pb_D)

{

 If (small case) then small solution;

 Else {//divide the problem in many Sub problem

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 //Combine is empty;

 }

}

Empty Combine

D&C (Parameter, Solution)

{

 Divide the problem as current state

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine the solutions;

}

D&C without Dimension

 D&C (Pb_D)

{

 If (small case) then small solution;

 Else {// Divide the problem into sub problems;

 Do in Parallel {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 //combine is empty

 }

 }

}

Empty Combine parallel

Memory A

D&C (Pb_D)

{

 If (current case in A) then Solution  Solution from A;

 Else {

 If (small case) then save small solution in A

 Else {// Divide the problem into sub problems;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 //combine is empty

 }

 }

}

Empty Combine memorization

Memory A

D&C (Pb_D)

{

 If (current case in A) then Solution  Solution from A;

 Else {

 If (small case) then save small solution in A

 Else { // Divide the problem into sub problems;

 Do in Parallel {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 //combine is empty

 }

 }

}

Empty Combine memorization with Parallel

D&C (Problem, Solution)

{

 Divide the problem into sub problems;

 Solve each sup problems;

 Combine the solutions;

}

Divide and Conquer

D&C (Pb_Dimension, Solution)

{

 Divide the problem into N parts;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine the solutions;

}

D&C with Dimension

30

 (Figure 4-3-C) presents empty combine case that comes from dimension parameters. It

consists of leaves (procedure or function) and many variations features (with empty small case,

parallel, memorization, memorization with parallel). Each variation ends by leaves (procedure or

function) with the number of call. The (Figure 4-3-C) shows the Combine variations textual meta

model.

D&C (Pb_D)

{

 If (not small solution)

 {// Divide the problem into sub problems;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 //Combine is empty;

 }

}

Empty combine with empty small solution
D&C (Pb_D)

{

 If (not small solution)

 {// Divide the problem into sub problems;

 Do in Parallel {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 //Combine is empty;

 }

 }

}

Empty Combine with Empty small solution parallel

Memory A

D&C (Pb_D)

{

 If (current case in A) then Solution  Solution from A;

 Else {

 If (not small solution) {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 //Combine is empty;

 }

 }

}

Empty Combine with Empty small solution memorization

D&C (Parameter, Solution)

{

 Divide the problem as current state

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine the solutions;

}

D&C without Dimension

D&C (Problem, Solution)

{

 Divide the problem into sub problems;

 Solve each sup problems;

 Combine the solutions;

}

Divide and Conquer

D&C (Pb_Dimension, Solution)

{

 Divide the problem into N parts;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine the solutions;

}

D&C with Dimension

D&C (Pb_D)

{

 If (small case) then small solution;

 Else {//divide the problem in many Sub problem

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 //Combine is empty;

 }

}

Empty Combine

31

Figure 4-3-D. Divide and conquer method with empty combine with empty small solution and

Text.

 (Figure 4-3-D) presents empty combine with empty small solution. It consists of leaves

(procedure or function) and many variations features (parallel, memorization, memorization with

parallel and tree). Each variation ends by leaves (procedure or function) with the number of call.

The tree feature has two children DFS B (depth first search blind) and BFS B (breadth first

search blind). Each child has three features, two leaf (procedure and function) and child contain

S (smart) then this feature arrive to leaf (procedure and function). The (Figure 4-3-D) shows the

combine with empty small solution variations textual meta model.

4.3.2 Divide and conquer meta modelling by UML

 This section tries to present the above D&C meta model (Figure 4-2) with UML class

diagram notations.

 The primary class in meta-meta model layer is DivideAndConquer class, this class has

attribute (DivideAndConquer as Text) and operation (instance). The next layer is of two classes,

the first class D&CWithDimension consists of attribute (D&CWithDimension as Text). The

Memory A

D&C (Pb_D)

{

 If (current case in A) then Solution  Solution from A;

 Else {

 If (not small solution)

 {// Divide the problem into sub problems;

 Do in Parallel {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 //Combine is empty

 }

 }

 }

}

Empty Combine with Empty small solution memorization with parallel

D&C (N)

If (not small solution)

{

 Process (N);

 INQ(N.left);

 INQ(N.Right);

 If (queue not empty) then D&C (DEQ (N));

}

Empty Combine with Empty small solution

BFS

D&C (N)

If (not small solution)

{

 Process (N);

 If (condition left) Then INQ (N.left);

 If (condition right) Then INQ (N.right);

 If (queue not empty) then D&C (DEQ (N));

}

Empty Combine with Empty small solution BFS smart

D&C (N)

If (not small solution)

{

 Process (N);

 D&C (N.left);

 D&C (N.right);

}

Empty Combine with Empty small solution DFS

D&C (N)

If (not small solution)

{

 Process (N);

 If (condition left) Then D&C (N.left);

 If (condition right) Then D&C (N.right);

}

Empty Combine with Empty small solution DFS

smart

32

second class D&CWithoutDimension consists of attribute (D&CWithoutDimension as Text).

The relation between classes is instance.

Figure 4-4. Divide and conquer model by UML.

 The idea in (Figure 4-2), is that the bottom layer takes instance from above layers and

changes the text at the above layers to arrive at a new instance divide and conquer algorithm as

in the methodology in (Figure 4-1).

 UML is suitable for operational problems but not for textual ones. So, it does not support

the instantiation concept nor the text concepts. The following problems are clearly stated:

 There is no textual instance relation in UML class diagram notation.

 In class diagram all attributes and operations in primary class will be contained in

children class, this machine is not needed in divide and conquer meta modeling,

which is a text modeling.

 The attribute and operation do not change from one class to another in D&C class

diagram notation. So each children class will contain new text as attribute, derived

from the ancestor text by a special instantiation relation.

33

4.4 Problem Specific Algorithm Instantiation Phase

Figure 4-5. Instantiation phase, using data flow diagram notations.

 Now there is the need for a technique to generate instance from general meta model, the

process will be divided into many steps. The first step will depend on entering sentence

describing specific problem from user or from example and process it. The second step generate

a problem meta model (schema). The third step will modify the problem meta model by the user.

The fourth part will product a D&C instance algorithm for the fixed problem.

4.4.1 Problem specific algorithm meta model selection request

 The user will enter a sentence that describes the problem, this sentence must be processed to

convert it to a selection rule. If the sentence does not produce specific rule, the user will enter an

example, this example must be processed to convert it to a selection rule. If there is no specific

rule, the system will produce a default rule (Figure 4-6).

Figure 4-6. Problem specific algorithm meta model selection request and process, using flow

charts and Example.

ProblemMMSelection()

{

 Input sentence describing problem;

 SentenceConvirtingToRule();

 IF find schema

 GenerateRuleForModel();

 Else

 {

 Input example

 ExampleConvirtingToRule();

 GenerateRuleForModel();

 }

}

34

(Figure 4-6) presents example of problem specific algorithm meta model selection request.

The user will give a sentence (sum array) or an example (1, 8, 10, 5, 6 30), the process will

generate the suitable rule (combine/procedure).

 Sentence describing the problem:

 The following BNF rules specify the used language for describing the specific

requirements of the problem at hand:

<Sentence>:= <key words>

<Key words>:= (<key word>) +

< Key word > ::=< default>

 |array

 |set

 |list

 |sort

 |Search

 | (Depth || top down || dfs) ˅ (| breadth || level || bfs)

 |smart

 | (Sum || total || +)

 | (multiply || *)

 |(Less || lower || min)

 | (Great || max || higher)

 |read

 |write

 |Insert

 |delete

 |factorial

 |static data || use again || memory

 |parallel ||multi thread || multi process || multi cpu

 |procedure ˅ function

<Default>:=procedure

 |two call

||: the words same meaning; V: the words do not use together

 Example sentence:
 Sum array, Multiply list, Insert array, Read set, Sum set parallel, Write set parallel,

function, Factorial static, Search array, Search set parallel function, BFS smart, Sort

list function, Sort set parallel,……….

 Sentence converting to rule :
 Sum array V Sum set V Sum list combine.

35

 Total array V Total set V Total list  combine.

 + array V + set V + list  combine.

 Multiple array V Multiple set V Multiple list  combine.

 * array V * set V * list  combine.

 Less array V Less set V Less list  combine.

 Lower array V Lower set V Lower list  combine.

 Min array V Min set V Min list  combine.

 Great array V Great set V Great list  combine.

 Max array V Max set V Max list  combine.

 Higher array V Higher set V Higher list  combine.

 Factorial array V Factorial set V Factorial list  combine.

 Sort array V Sort set V Sort list  combine / empty small solution.

 Read array V Read set V Read list  empty combine.

 Write array V Write set V Write list  empty combine.

 Insert array V Insert set V Insert list  empty combine.

 Delete array V Delete set V Delete list  empty combine.

 Search array V Search set V Search list  empty combine.

 BFS V breadth V level  empty combine / empty small solution / BFS.

 BFS smart V breadth smart V level smart  empty combine / empty small solution /

BFS S.

 DFS V depth V top down  empty combine / empty small solution / DFS.

 DFS smart V depth smart V top down smart  empty combine / empty small solution

/ DFS S.

 Static data V use again V memory  memorization.

 Parallel V multi thread V multi process V multi CPU  parallel.

 Procedure  Procedure.

 Function  Function.

 Default rule  combine / procedure

 Example of rules:
 Sum array [combine / procedure].

 Multiply list  [combine / procedure].

 Insert element to array [empty combine / procedure].

 Read set [empty combine / procedure].

 Sum set parallel [combine / parallel / procedure].

 Write set parallel function  [empty combine / parallel / function].

 Factorial static data [combine / memorization / procedure].

 Search array [empty combine / empty small solution / procedure].

 BFS S function  [empty combine / empty small solution / parallel / function].

 Sort list function  [combine / empty small solution / function].

 Sort set parallel  [combine / empty small solution / procedure].

36

 Rule by example and converting example to rule:

If the process fails to select instance from sentence, the user will enter example the process

will analysis example by rule:

[x1,x2,…..,xn]  y;

[x1,x2,…..,xn]  [y1,y2,…..,yn]

[x1,x2,…..,xn]  [x1,x2,…..,xn]

[x1,x2,…..,xn]  Null

[x1,x2,…..,xn] [x2,xn,…..,x1]

V
 [xn,x2,…,x1]

 V
 [………….…]

[x1,x2,…..,xn] xi ; i:1n

 Example of rules:
 1, 9, 16, 81,1211, 3, 4,9,11 combine.

 1,12,15,4,3,237 combine.

 11, 20,21,33,4411, 20,21,33,44 empty combine.

 1,8,7,6,5Nullempty combine

 12, 11,0,1,44,1,0,11,12 combine / empty small solution.

 100, 14,15,12,5014: empty combine / empty small solution

4.4.2 Problem specific algorithm meta model instantiation

 Given a selection rule and the general meta model, the instantiation process will produce the

instance candidate for the given problem (Problem model).If specific instance is found, the

process will generate it. Otherwise the process will generate a general model (Figure 4-7).

Schema: combine

Schema: empty combine

Schema: combine with

empty small Solution

Schema: empty combine

with empty small Solution

37

Figure 4-7. Problem specific algorithm meta model instantiation and process, using flow

charts.

 Example:

Figure 4-8. Problem specific algorithm meta model instantiation Example.

(Figure 4-8) presents example of problem specific algorithm meta model instantiation. The

process will take selection rule (combine/procedure, obtained in Figure 4-6) and general meta

model, the process will generate the suitable model (combine, obtained in Figure 4-8).

4.4.3 Problem specific algorithm variability parameters fixing

 This process identifies the variable fields which are the instance parameters for which the

user should provide values (Figure 4-9).

MetaModellingInstantiation(ModelRule, genralMMl)

{

 Boolian A

 A=Search(rule, generalMM);

 IF (A)

 GenerateSpcificModel();

 Else

 {

 GenerateDefualtModel();

 }

}

38

Figure 4-9. Problem specific algorithm variability parameters fixing and process, using flow

charts.

 Example:

Figure 4-10. Problem specific algorithm variability parameters fixing Example.

 (Figure 4-10) presents example of problem specific algorithm variability parameters fixing.

The user will identify the fixed parameters (problem data) for selection model (combine,

obtained in Figure 4-8), the process will take the variable fields from user:

algorithm namesum;

 Pb-Dleft, right;

small case1  left = right

small solution1  array[left]+array[right];

small case2 left = right-1;

small solution2  array[left]);

 After the user provides the value, the problem specific algorithm variability parameters fixing

process will send the value (in Figure 4-10) to problem specific algorithm process.

ProblemInstantiationData(ProblemModel)

{

 IdentifyTheEmptyVariableField();

 Proposed ProblemDataForVariableField();

 Output problem data;

}

39

4.4.4 Problem specific algorithm

This process fills the variable fields of an instance by the user fixed parameters textual values

(Figure 4-11).

Figure 4-11. Problem specific algorithm and process, using flow charts.

 Example:

Figure 4-12 Problem specific algorithm Example

 (Figure 4-12) presents example of problem specific algorithm. The process will fill the fixed

parameters (obtained in Figure 4-10):

algorithm namesum;

 Pb-Dleft, right;

small case1  left = right

small solution1  array[left]+array[right];

small case2 left = right-1;

 small solution2  array[left]);

ModelInstantiation(ProblemData, ProblemModel)

{

 FillValueByGivenProblemData();

 GenerateDivideAndConquerInstanceAlgoritm();

}

40

 After filling the parameters of an instance (combine, obtained in Figure 4-8) then it will

produce sum algorithm by divide and conquer (obtained in Figure 4-12).

4.5 Discussion

 This thesis has designed a methodology for D&C method. This methodology is based on

meta modelling D&C variability and on an instantiation process according to problem soecific

requirements. The formalization of this methodology by meta modelling well known languages

(UML and FD) has proved the non-suitability of UML to Text architectures modelling, whereas

the FD was stated very adapted to.

CHAPTER FIVE: IMPLEMENTATION ISSUES,

APPLICATION AREAS AND PERSPECTIVE

42

5.1 Introduction

 This chapter discusses the following views of the thesis contribution: The first point deals

with implementation issues, the second point deals with the application areas of that

contributions, the third point deals with evaluating the contribution by comparing it with relevant

works, and finally it presents a conclusion and future possible works.

5.2 Implementation issues

 No specific requirements in programmed environment and skills are required.

5.3 Application areas

 Divide and conquer method will be strengthened by using meta modelling concept, it will

add higher general abstraction and generate instance easily.

 The proposed methodology may be used in all dimensioned problem solving, having

variation parameters from one to another.

5.4 Evaluation

 This section starts by comparing some relevant related works with this thesis

contribution, based on some identified relevant criteria. It ends by evaluation UML and DF

regarding their suitability to variable textual architectures meta modelling. Bellow supporting

concept example in Table 5-2, and the Symbol using:  this means not supported.

Table 5-1. Divide and conquer meta modelling concept

Concept Example of supporting works Thesis concept supporting

Divide and conquer meta

model



Apply meta model concept to

divide and conquer method.

Divide and conquer model

(Francés, 1998)

Represented divide and

conquer cases by Feature

Model.

Divide and conquer instance

schema

 (Rahmani, 2010).

A schema product from

divide and conquer model.

Divide and conquer instance

algorithm



There is a technique to

generate divide and conquer

instance algorithm.

43

Comparison with similar works: through reading the literature (Francés, 1998; Rahmani,

2010), there are many evaluation criteria:

1. Methodology. Actually, there is no methodology for divide and conquer meta

modelling. This thesis proposes a methodology for it.

2. General Abstraction. There is a fixed and operational design pattern in (Francés,

1998) and Sorting Algorithms operational framework model in (Rahmani, 2010).

This thesis proposes a general and variable textual metamodel covering broad

classes of problems

3. Modelling Languages. The current works, which are limited to operational Divide

& Conquer model (one abstraction level) uses UML (Object-Oriented operational

modelling language) which is very suitable for this abstraction modelling level.

This thesis proposes a meta model with several abstraction levels, each one deals

with a variability parameters in Divide and Conquer. This kind of variability

requires text-based meta modelling languages rather than operational languages.

So, the use of FDL (which is abstractions multi layered and text-based) revealed

to be very suitable, whereas UML was ineffective.

4. Instantiation Process. No, instantiation Processes were proposed in the current

research works in this domain, this thesis proposes, as part of its Divide &

Conquer metamodeling methodology, a process for this important task, with all its

needed mechanisms.

 Bellow a comparison represented in Table 5-2, and the Symbol using:  means complete

support,  means partial support, and  means not support.

Table 5-2. Comparison between related work and thesis contribution

Concept Francés 1998 Rahmani 2010 thesis contribution

Methodology   

Abstraction general   

Feature diagram   

44

UML   

Generate Instance   

 Compare between UML and feature diagram

 A D&C variability meta model was presented by FD and by UML. FD meta model has

proved powerful capability in representation and instantiation. Whereas UML use has proved its

inefficiency for textual meta modelling: (1) there is no textual instantiation by specializing a

textual model to another, (2) no “or” relation in UML class diagram notation. (3) In class

diagram all attributes and operations in primary class will be contained in children classes, this

inheritance is not needed in meta modelling. And (4) The attributes and operations do not change

from class to another in class diagram. So each child class will contain new text as attribute,

generated from the ancestor’s classes.

5.5 Conclusion: perspectives and future works

 This thesis has achieved many contributions. The first consists of a methodology guiding

algorithms design by D&C. The second deals with meta modeling D&C variability and

formalizing the variability parameters with UML and FD. The third deals with a process guiding

the instance algorithm generation. Finally, UML was evaluated to be inappropriate for this kind

of meta modeling. This research leaded to the following open problems:

1. The contribution of this thesis is limited to problems having fixed dimensions. A

huge number of problem classes are dimension free. Their meta modelling will be

very valuable.

2. The combination of Divide & Conquer meta models for dimensioned problems and

non-dimensioned ones will be appreciated.

3. The evaluation of the complexity of the proposed methodology (and generally of

open layered Meta modelling techniques) relative to limited layers one is a key

point in this domain.

45

4. The UML generalization study to support text-based modelling may lead to its

innovation.

46

References

Byrne B.M., Yasser Shahzad Qureshi, (2013). THE USE OF UML CLASS DIAGRAMS TO

TEACH DATABASE MODELLING AND DATABASE DESIGN. Higher Education

Academy.

Chow C., Tsong Yueh Chen, T.H. Tse, (2013). The ART of Divide and Conquer: An

Innovative Approach to Improving the Efficiency of Adaptive RandomTesting. Proceedings

of the 13th International Conference on Quality Software (QSIC).

Clark T., Andy Evans, Paul Sammut, JamesWillans, (2008). APPLIED METAMODELLING A

FOUNDATION FOR LANGUAGE DRIVEN DEVELOPMENT. SECOND EDITION.

Ceteva 2008.

Ehrig K., Jochen Malte Küster, Gabriele Taentzer, (2009). Generating instance models from meta

models, Software & Systems Modeling, Volume 8, Issue 4, pp 479-500.

Francés J.G., Julio García-Martín, Jose M. Burgos-Ortiz, Miguel Sutil-Martín,(1998). An Approach

 to Algorithm Design by Patterns.

Giacomo G.D., Maurizio Lenzerini, Riccardo Rosati, (2011). Higher-Order Description Logics for

Domain Metamodeling. AAAI.

Gitzel R., T. Hildenbrand, (2005). A Taxonomy of Metamodel Hierarchies. University of Mannheim.

Hao Wu, Rosemary Monahan, James F. Power, (2012). Metamodel Instance Generation:A

systematic literature review CoRR abs/1211.6322.

Henderson-Sellers B., (2012). On the Mathematics of Modelling, Metamodelling, Ontologies and

Modelling Languages. Springer.

Hijma P., Rob van Nieuwpoort, Ceriel J. H. Jacobs, Henri E. Bal, (2011). Automatically Inserting

Synchronization Statements in Divide-and-Conquer Programs. IPDPS Workshops 1233-

1241.

Jin W., Bo Zhu,Xuanya Li, (2012). A Novel Pipelined Multiplier Using Divide and Conquer

Algorithm. International Conference on Industrial Technology and Management.

Kang K.C., Sholom G. Cohen, James A. Hess, William E. Novak, A. Spencer Peterson, (1990).

Feature-Oriented Domain Analysis (FODA) Feasibility Study. Software Engineering Institute

Carnegie Mellon University Pittsburgh, Pennsylvania 15213.

http://link.springer.com/search?facet-author=%22Karsten+Ehrig%22
http://link.springer.com/search?facet-author=%22Jochen+Malte+K%C3%BCster%22
http://link.springer.com/search?facet-author=%22Gabriele+Taentzer%22
http://link.springer.com/journal/10270
http://link.springer.com/journal/10270/8/4/page/1
http://www.dblp.org/pers/hc/g/Giacomo:Giuseppe_De.html
http://www.dblp.org/pers/hc/l/Lenzerini:Maurizio.html
http://www.dblp.org/pers/hc/r/Rosati:Riccardo.html
http://www.dblp.org/db/conf/aaai/aaai2011.html#GiacomoLR11
http://www.dblp.org/pers/hc/w/Wu:Hao.html
http://www.dblp.org/pers/hc/m/Monahan:Rosemary.html
http://www.dblp.org/pers/hc/p/Power:James_F=.html
http://www.dblp.org/db/journals/corr/corr1211.html#abs-1211-6322
http://www.dblp.org/pers/hc/h/Henderson=Sellers:Brian.html
http://www.dblp.org/
http://www.dblp.org/pers/hc/h/Hijma:Pieter.html
http://www.dblp.org/pers/hc/n/Nieuwpoort:Rob_van.html
http://www.dblp.org/pers/hc/j/Jacobs:Ceriel_J=_H=.html
http://www.dblp.org/pers/hc/b/Bal:Henri_E=.html
http://www.dblp.org/db/conf/ipps/ipdps2011w.html#HijmaNJB11
http://www.dblp.org/db/conf/ipps/ipdps2011w.html#HijmaNJB11

47

Koripadu M., K. Venkata Subbaiah, (2014). Problem Solving Management Using Six Sigma Tools &

Techniques. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY

RESEARCH VOLUME 3, ISSUE 2.

K¨uhne T., (2006). Matters of (Meta-) Modeling. Journal on Software and Systems Modeling,

Volume 5, Number 4, pp. 369-385.

Lopez-Ortiz A. , Alejandro Salinger, Robert Suderman, (2014). Toward a Generic Hybrid CPU-GPU

Parallelization of Divide-and-Conquer Algorithms. IPDPS Workshops 601-610.

Mateos C., Alejandro Zunino, Matías Hirsch, (2013). EasyFJP: Providing hybrid parallelism as a

concern for divide and conquer java applications. Comput. Sci. Inf. Syst. (COMSIS)

10(3):1129-1163.

Rahmani M., et al, (2010). A New Design Pattern for Sorting Algorithms. Proceedings of

NCSOFT.

Rebori MK., (1995). EFFECTIVE PROBLEM-SOLVIN TECHNIQUES FOR GROUPS.

UNIVERSITY OF NEVADA RENO.

Sprinkle J., Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai, (2010). Metamodelling State of

 the Art and Research Challenges. Springer-Verlag Berlin Heidelberg.

Witherell P., Anantha Narayanan, JaeHyun Lee, (2011). Using Metamodels to Improve Product

Models and Facilitate Inferencing. ICSC 506-513.

vander W.M. P., (2012). Aalst: A General Divide and Conquer Approach for Process Mining. Fed

CSIS 2013:1-10.

Zhiyi M., Xiao He, Chao Liu, (2013). Assessing the quality of metamodels. Frontiers of Computer

Science (FCSC) 7(4):558-570.

Zuniga M. M, S. Kucherenko, N. Shah, (2013). Metamodelling with independent and dependent

inputs. Computer Physics Communications (CPHYSICS) 184(6):1570-1580.

http://www.dblp.org/pers/hc/l/L=oacute=pez=Ortiz:Alejandro.html
http://www.dblp.org/pers/hc/s/Salinger:Alejandro.html
http://www.dblp.org/pers/hc/s/Suderman:Robert.html
http://www.dblp.org/db/conf/ipps/ipdps2013w.html#Lopez-OrtizSS13
http://www.dblp.org/pers/hc/m/Mateos:Cristian.html
http://www.dblp.org/pers/hc/z/Zunino:Alejandro.html
http://www.dblp.org/pers/hc/h/Hirsch:Mat=iacute=as.html
http://www.dblp.org/db/journals/comsis/comsis10.html#MateosZH13
http://www.dblp.org/db/journals/comsis/comsis10.html#MateosZH13
http://www.dblp.org/pers/hc/w/Witherell:Paul.html
http://www.dblp.org/pers/hc/n/Narayanan:Anantha.html
http://www.dblp.org/pers/hc/l/Lee:JaeHyun.html
http://www.dblp.org/db/conf/semco/icsc2011.html#WitherellNL11
http://www.dblp.org/pers/hc/h/He:Xiao.html
http://www.dblp.org/pers/hc/l/Liu:Chao.html
http://www.dblp.org/db/journals/fcsc/fcsc7.html#MaHL13
http://www.dblp.org/db/journals/fcsc/fcsc7.html#MaHL13
http://www.dblp.org/pers/hc/z/Zuniga:M=_Munoz.html
http://www.dblp.org/pers/hc/k/Kucherenko:S=.html
http://www.dblp.org/pers/hc/s/Shah:N=.html
http://www.dblp.org/db/journals/cphysics/cphysics184.html#ZunigaKS13

APPENDIX

49

 The appendix explains, a scenario for the methodology introduced in page 25 (Figure 4-1).

1. Divide and Conquer meta model

 In the beginning, by applying meta model technique that is applied on divide and conquer

method the Figure 1 is obtained.

 Figure 1. Divide and conquer by meta model technique.

The above divide and conquer meta model (Figure 1), is represented by feature diagram

notations as in (Figure 2-A, Figure 2-B).

Figure 2-A. Divide and conquer with combine by feature diagram.

50

Figure 2-B. Divide and conquer method with combine and Text.

(Figure 2-A) presents a Combine variation FD of D&C method. Combine coming from

dimension parameters. It consists of leaves (procedure or function) and many variations features

(with empty small case, parallel, memorization, memorization with parallel). Each variation ends

by leaves (procedure or function) with the number of call. The (Figure 2-B) shows the Combine

variations textual meta model.

D&C (Problem, Solution)

{

 Divide the problem into sub problems;

 Solve each sup problems;

 Combine the solutions;

}

Divide and Conquer

D&C (Pb_Dimension, Solution)

{

 Divide the problem into N parts;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine the solutions;

}

D&C with Dimension

D&C (Pb_D, Solution)

{

 If (small case) then small solution;

 Else {// Divide the problem into sub problems;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine (Sub Sol1, Sub Sol2,…, Sub SolN);

 }

}

Combine

Memory A

D&C (Pb_D, Solution)

{

 If (current case in A) then Solution  Solution from A;

 Else {

 If (small case) then save small solution in A

 Else {// Divide the problem into sub problems;

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine and save in A (Sub Sol1, Sub Sol2,…, Sub SolN);

 }

 }

}
Combine memorization

Memory A

D&C (Pb_D, Solution)

{

 If (current case in A) then Solution  Solution from A;

 Else {

 If (small case) then save small solution in A

 Else {// Divide the problem into sub problems;

 Do in Parallel {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine and save in A (Sub Sol1, Sub Sol2,…, Sub SolN);

 }

 }

}

Combine memorization with parallel

D&C (Pb_D, Solution)

{

 If (small case) then small solution;

 Else {// Divide the problem into sub problems;

 Do in Parallel {

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine (Sub Sol1, Sub Sol2, …, Sub SolN);

 }

 }

}

Combine Parallel

D&C (Parameter, Solution)

{

 Divide the problem as current state

 D&C (Part1, Sub Sol1);

 D&C (Part2, Sub Sol2);

 ….

 D&C (PartN, Sub SolN);

 Combine the solutions;

}

D&C without Dimension

51

2. Problem specific algorithm meta model selection request (by user)

 The user gives a sentence that describes his problem. This sentence is converted into a

selection rule. If this conversion fails, the user may give an example which will be converted into

a selection rule. If still there is a failure, the system will produce a default rule (Figure 3).

Figure 3. Problem specific algorithm meta model selection request example

(Figure 3) presents example of problem specific algorithm meta model selection request. The

user will give a sentence (sum array) or an example (1, 8, 10, 5, 6 30), the process will

generate the suitable rule (combine/procedure).

3. Problem specific algorithm meta model instantiation

 Given a selection rule (obtained in Figure 3) and the general meta model (Figure 2-B) the

instantiation process will produce the instance candidate for the given problem (Problem model).

If specific instance is found, the process will generate it. Otherwise the process will generate a

general model.

Figure 4. Problem specific algorithm meta model instantiation example.

 (Figure 4) presents example of problem specific algorithm meta model instantiation. The

process will take selection rule (combine/procedure, obtained in Figure 3) and general meta

model (Figure 2-B), the process will generate the suitable model (combine, obtained in Figure 4).

52

4. Problem specific algorithm variability parameters fixing (by user)

This process identifies the variable fields which are the instance parameters for which the user

should provide values (Figure 5).

Figure 5. Problem specific algorithm variability parameters fixing example.

 (Figure 5) presents example of problem specific algorithm variability parameters fixing. The

user will identify the fixed parameters (problem data) for selection model (combine, obtained in

Figure 4), the process will take the variable fields from user:

algorithm namesum;

 Pb-Dleft, right;

small case1  left = right

small solution1  array[left]+array[right];

small case2 left = right-1;

 small solution2  array[left]);

 After the user provides the value, the problem specific algorithm variability parameters fixing

process will send the value (in Figure 5) to problem specific algorithm process.

5. Problem specific algorithm

This process fills the variable fields of an instance by the user fixed parameters textual values

(Figure 6).

53

Figure 6. Problem specific algorithm Example

 (Figure 6) presents example of problem specific algorithm. The process will fill the fixed

parameters (obtained in Figure 5):

algorithm namesum;

 Pb-Dleft, right;

small case1  left = right

small solution1  array[left]+array[right];

small case2 left = right-1;

 small solution2  array[left]);

After filling the parameters of an instance (combine, obtained in Figure 4) then will produce sum

algorithm by dividing and conquer (obtained in Figure 6).

54

 ملخص

مجممد: ر اضد مممد و اممف دع)داممف ةدلمم همما دىممدم دهممت دع فد ممم لمما قسممت ىممخ دع يممدةخ سمم د لمما ممد د قسممت سمم

مجد: مم، و دعزماضممدلو دعة،دامم و دعممي دع، مجمم ديمم، مف ممفت ىمممفب ض)ممدا م ،ف مم رمما د:)ممدا ممدل ة ممفض دع ردعجمم

 دع ز ضر و دع ردعج دع فزضرم و دعي ودعبرا د:خ دا دمةد لا ىخ ميكلا م ردد لما مجمد: م ازم عكمي : ضف مد ه،مد

 :ضف ممد ق ض مم، 3 :ضف ممد م،ةجممم، ممد هممرا دع رممم د 2د ع ثمممخ دع رممم د لمما ق ض مم قسممت سممي ممف ع ممد 1ى مما د:)

 د دادام ةزدةم عرمد دع، ر م، ةمدع ا امفه ي همد ةارم م م دع مماد 4 :ا لاص خفدازمم، خدص، يكا، مرم،،

 ي م امدمخ ضر ما مجمد: م ازم ي)ميص اا ي دق م)دود دد لإضجدد را د: دل ىدوعت دضجدد ي ف ع د عك،ةد دق

دعا مزةف دع، ر ، دعردمم دعزفقمم وهما مدل لما د)مدا م رمدد وودامر، وهما امم عرمد دد م، مثمخ عرم دع، ر م، ي) دع

ر ما د لما ق ض م قسمت سمممخ رما دع رمم دي م م،ةجمم، ر مد اما ي ث لا دق وى ،د امفه دع فىد وم دع ماد

 ميدةخ م از لا د مجد: دا دد دع، ر ، دعزفقم ودعارد دعدد عةد وةمف فعمد ىخ ميكا، م)ددا ممي دع، مف ع دعرمد

ر دع، ر ، دع فىدا عةرد دع،فت مي دع رم د و ض كمي)سممي عرم لا دع، مج، ىصا،د اا د) م دع ماد دةث دا داد مي ع

 ت رم د دع)دع، لا ق ا قست سد ،ر ، دع فىدا عد دع

دتمثيل التغيرات في طريقة قسم تس

 بواسطة

 احمد فؤاد الجاسم السلطان

 بإشــراف

 أ.د. سـعـيد الغول

 قدمت هذه الرسالة استكمالاً لـمـتطلبات الحصول على درجة

 الــمـاجـسـتير في عـلـم الـحـاسـوب

والدراسات العليا عـمـادة البحث العلمي

 جامعة فيلادلفيا

4102

	Dedication
	Acknowledgment
	(بسم الله الرحمن الرحيم وَمَا أُوتِيتُمْ مِنْ الْعِلْمِ إِلاَّ قَلِيلاً)

	Table of Contents
	List of Tables
	List of Abbreviations
	List of Figures
	Abstract
	CHAPTER ONE: INTRODUCTION
	CHAPTER TWO: RELATED WORK

	CHAPTER FOUR: A VARIABILITY META MODEL IN DIVIDE AND CONQUER METHOD
	CHAPTER FIVE: IMPLEMENTATION ISSUES, APPLICATION AREAS AND PERSPECTIVE
	Divide and conquer method will be strengthened by using meta modelling concept, it will add higher general abstraction and generate instance easily.
	The proposed methodology may be used in all dimensioned problem solving, having variation parameters from one to another.
	This section starts by comparing some relevant related works with this thesis contribution, based on some identified relevant criteria. It ends by evaluation UML and DF regarding their suitability to variable textual architectures meta mo...
	Table 5-1. Divide and conquer meta modelling concept
	References

	تمثيل التغيرات في طريقة قسم تسد
	بواسطة
	احمد فؤاد الجاسم السلطان
	بإشــراف
	أ.د. سـعـيد الغول
	قدمت هذه الرسالة استكمالاً لـمـتطلبات الحصول على درجة
	الــمـاجـسـتير في عـلـم الـحـاسـوب
	عـمـادة البحث العلمي والدراسات العليا
	جامعة فيلادلفيا
	2014

