

Philadelphia University Faculty of Science Department of –Biotechnology and Genetics Engineering Second Semester, 2009/2010

	Course Syllabus		
Course Title: Pharmaceutical	Course code: 240441		
Biotechnology			
Course Level: 4	Course prerequisite (s) and/or corequisite (s): 240343		
Lecture Time: 8:15 -9:30	Credit hours: 3 hours		

		Academic Staff Specifics		
Name	Rank	Office Number and Location	Office Hours	E-mail Address
Marwan Abu-	Assistant	Science	Sunday : 9:00- 10:00	mhalaweh@philadelphia
Halaweh	Prof.	building, 908	Monday: 9:00- 10:00	.edu.jo

Course module description:

- I. This course is a core requirement for the department. It is based on lectures. This course contains three major parts:
 - I. To understand the various techniques in biotechnology and their applications in the manufacturing of biopharmaceuticals and biomedical research
 - II. To gain knowledge in some of the physicochemical properties, pharmacology and the formulation of commonly used biopharmaceuticals
 - III. To understand the principles of the mechanism of some biotechnologically derived diagnostic aids/tests

Course module objectives:

At the end of this module, student will be able to:

I. By understanding of the composition and technology of biopharmaceutical drug production, and development and use of the gene therapy, students will expand

their practical knowledge and understanding of therapeutical effects as well as of undesired side effects of biopharmaceuticals.

- II. Transferable/Key Skills and other attributes:
- *III.* Appreciate and understand the legal steps involved in progressing a new drug to market.
- *IV.* Demonstrate knowledge and understanding of currently topical and newly emerging aspects of pharmaceutical biotechnology

Course/ module components

• Books (title, author (s), publisher, year of publication)

Pharmaceutical Biotechnology, second edition. Crommelin J.A., Sindelar R.D. Routledge-Taylor&Francis, London, New York, 2003

Teaching methods:

Lectures, discussion groups.

Learning outcomes:

• Cognitive skills (thinking and analysis).

- 1. Students will have a basic understanding of the scientific method.
- 2. Students will have the opportunity to practice thinking critically and analytically and reason logically using current information and past experiences.
- 3. Students will have practice in assessing basic sources of information and how to evaluate and use this information.

• Communication skills (personal and academic).

Students will gain experience in effective communication skills by practicing, listening, reading, writing and speaking clearly.

Short oral presentations of 5-8 minutes will be required of all students and will be given during a class period. Students will pick Pharmaceutical Biotechnology topic and discuss specific issues related to the topic.

Practical and subject specific skills (Transferable Skills).

- 1. Students will develop an awareness of the relationship between science and technology in terms of the life and Pharmaceutical Biotechnology.
- **2.** Emphasis will be placed upon an analytical problem-solving approach to Pharmaceutical Biotechnology.

Assessment instruments

Allocation of Marks			
Assessment Instruments	Mark		
First examination	15		
Second examination	15		
3 ten minuets exams	15		
Reports and presentations	5		
Final examination: 50 marks	50		
Total	100		

	Basic and support	Homework/reports and
week	material to be covered	their due dates
(1)	Introduction	Assignment due date end
		of week 10
(2)	Molecular Biotechnology	
(3)	Biophysical and	
	Biochemical Analysis of	
	Biotech Products	
(4)	Production of Biotech	
	Compounds and	
	downstream processing	
(5)	Formulation of Biotech	
	products	
(6)	PK/PD of Nucleic Acids	Assignment due date
First		
examination		
(7)	Monoclonal Antibody-	Presentation
	Based Pharmaceuticals	
(8)	Vaccines (antibodies)	Presentation
(9)	Growth hormone,	Presentation
	Interleukins, and	
	Interferon's	
(10)	Pharmacogenetics	Presentation
(11)	Pharmacogenetics	
Second		
examination		
(12)	Economic consideration in	
	Medical Biotechnology	
(13)	Patients, Companies &	
	Pharmacy Issues	
(14)	Gene Therapy	
	(oligonucleotides), Gene	
	Therapy (ribozymes	
(15)	Gene Therapy (viral), Gene	
	Therapy (non-viral)	
(16)		
Final		
Examination		

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

Students will be expected to give the same attention to these references as given to the Module textbook(s)

Pharmaceutical Microbiology, Hugo Russell, , Sixth edition, Black well Science, (2005)

Journals

• Any biotechnology, pharmaceutical microbiology and pharmaceutical biotechnology journal will be of great benefits to the student for their assignment.