

Philadelphia University Faculty of Science Department of Basic Sciences Spring semester, 2008/2009

Course Syllabus

Course Title: Principles of General Chemistry	Course code: 212099
Course Level: 1	Course prerequisite (s)
Lecture Time: 3:10-4:00	Credit hours: 3

Academic Staff Specifics

Name	Rank	Office Number and Location	Office Hours	E-mail Address	
Dr. Safwan Obeidat	Assistant	Faculty of Science	11-12 S, Tu, Th	Sobidat@Philadelphia.edu.j	
	Prof.	(1018)	10-11 M, W		

Course module description:

This module aimes to cover the basic principles of general chemistry, which will help students to understand the general chemistry Courses Chem 101 and 102.

Course module objectives:

This course presents a basic introduction to chemical concepts and the development of stoichiometric principles. It also provides the student with a fundamentals in chemical information and an understanding of the need for theory, the concepts to electronic structure, and chemical bonding. Finally it will introduce the general concepts in organic chemistry.

Course/ module components

• Books (title, author (s), publisher, year of publication)

Text book:

Title: General Chemistry, The essential concepts, 9th edition

Author: Raymond Chang Publisher: Mc Graw Hill 2007 ISBN: 0-07-241067-1 • Support material (s) (Handouts, models).

Teaching methods:

Lectures, discussion groups, tutorials, problem solving, debates, etc.

Learning outcomes:

- Knowledge and understanding
 - Have an understanding of basic chemical principals (mainly definitions and basic calculations)
 - Understand the acid base titrations and the calculations based on these types.
- Cognitive skills (thinking and analysis).

To identify and solve problems. work with given information and handle basic calculations based on chemical equations. And ability to differentiate between elements and molecules, acids and bases, etc....

• Communication skills (personal and academic).

Encourage the students to be self starters (creativity, decisiveness, initiative) and to finish the chemical problems properly (flexibility, adaptability). Also to improve general performance of students through the interaction with each other in solving different chemical problems.

Practical and subject specific skills (Transferable Skills).
 Gaining knowledge and experience of working with relevant modern laboratory equipment.

Assessment instruments

- Short reports and/ or presentations, and/ or Short research projects
- Ouizzes.
- Home works
- Final examination: 50 marks

Allocation of Marks			
Assessment Instruments	Mark		
First examination	20		
Second examination	20		
Final examination: 50 marks	50		
Quizzes, Home works	10		
Total	100		

Documentation and academic honesty

• Documentation style (with illustrative examples)

APA Style.

Example: Natarajan, R., & Chaturvedi, R. (2003). *Geology of the Indian Ocean Floor*. Hartford, CT: Merganser University Press

- Protection by copyright
- Avoiding plagiarism.

Course/module academic calendar

	Basic and support material to be		
Week	covered		
(1)	Basic Concepts:		
	Matter, Energy and Life, SI units		
(2)	measurements (Mass, length, and		
	Volume) and significant figures		
(3)	Stoichiometry:		
	Mole concept ,measuring moles of atoms		
	and molecules ,percentage composition,		
	formulas.		
(4)	Chemical reactions, Reactions in solution		
	and their stoichiometry, Reactions of		
(-)	elements and Reactions of Compounds.		
(5)	The Periodic Table:		
	Periodic table and periodic law, metals		
(6)	and nonmetals and their properties		
(6) Finat	The electronic Structure:		
First examination	Modern atomic theory, masses of atoms,		
examination	compostion of atoms, Isotopes, atoms and light and Octet Rule.		
(7)	Nuclear Chemistry:		
(7)	General Concepts of Nuclear Chemistry		
(8)	Chemical bonding:		
(0)	Covalent Bonds Ionic bonding, Properties		
	of ionic componds		
(9)	, Chemical Formulas, Molecular		
	compounds,		
(10)	Molecular Geometry:		
	Drwaing Lewis Structures, Hybrid		
	Orbitals ,Multiple bonds ,Resonance		
	structures, Shapes, Polar molecules,		
	Properties of Molecular compounds.		
(11)	Shapes, Polar molecules, Properties of		
Second	Molecular compounds.		
examination			
(12)	Gases:		
(4.2)	Gas Laws		
(13)	Solutions:		
	Mixtures, Solubility, Molarity, Osmosis		
(4.4)	and Osmotic Pressure.		
(14)	Acids, Bases, and Salts:		
	Bronsted-Lowry acids and bases		
	Defintion of the acid and the base,		

(15)	Measuring Acidity in Aqueous Solutions:		
	pH and its calculations		
(16)	Buffer solution		
Final			
Examination			

Page 4 of 4

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

1. Analytical Chemistry: Principles and Techniques. By Larry G. Hargis.(editors) (December 17, 1996), Publisher: Pearson Education POD; Facsimile edition ISBN: 013033507X

2. Quantitative Chemical Analysis By Daniel C. Harris, 7th edition 2007, W. H. Freeman and Company. ISBN 0716728818.

Journals

Journal of analytical chemistry

Websites

http://101science.com/