Philadelphia University Department of Basic Sciences and Mathematics

First Semester	Course Syllabus	2014/2015
Course Title	Elementary Probability and Statistics	
Course Code	250231	
Lecturer	Ameina Al Taani	
Office Room	1016	
Office Hours	Sun. to.Thu. from 10:00 to 11:00	
E-mail Address	ataani@philadelphia.edu.jo	

Course Description

This is an introductory course in statistics. The course is planned so that students learn the basic concepts needed in probability theory and statistics. It familiarizes students with statistical terms such as population, sample, sample size, random variable, mean, variance, and much more. The course covers materials such as collecting data, graphical methods, descriptive statistics, regression and correlation and probability basics.

Textbook and Supporting Materials

- 1. Jaffar S. Almousawi, Introduction to Statistics, Dar Albarraka for Publishing.
- 2. Richard A. Johnson, Statistics: Principles and Methods, 6th Edition, John Wiley and Sons, Inc. 2010.

Teaching methods:

Lectures and problem solving.

Topics by the Week

Weeks	Chapter	Topics
	Chapter one : Introduction	Introduction and Data Collection.
	Statistics what is it?	Types of Data and Their Sources.
		Some Important Definitions
		Population, Sample, Parameter,
1		statistic, Descriptive statistics,
		And Inferential Statistics
	Chapter two:	Presenting Data in Tables and
	Data and data organizing	Charts, Organizing Numerical
		Data, The Ordered Array and
		Stem-Leaf Display, Tabulating
2		and Graphing Univariate
		Numerical Data, Frequency
		Distributions: Tables, Histograms
	Chapter three:	Numerical Descriptive Measures,
	Summarizing data numerically	Measures of Central Tendency,
3		Quartiles, Measures of Variation,
		Shape

	Chapter four:	Simple Linear Correlation and
	Simple Linear Correlation	Regression, The Scatterplot, The
1	and Regression	Least-Squares Equation, Slope of
		a Line, Intercept
	Chapter five:	Basic Probability, Sample spaces
	Probability concepts and	and events, Simple Probability,
	Distributions	Joint Probability, Conditional
3		Probability, Statistical independe-
		nce, Counting Rules
	Chapter six:	Some Important Discrete Proba-
	Discrete Probability	bility Distributions. The Probab-
1	Distributions	ility of a Discrete Random
		Variable, Binomial Distribution
	Chapter seven:	The Normal Distribution, The
2	The Normal Probability	Standardized Normal
	Distribution	Distribution
	Chapter eight:	Sampling Distributions, Sampling
1	Sampling Distributions	Distribution of the Mean, The
		Central Limit Theorem
1	All Chapters	Review

Course module objectives:

Upon completion of the course, the student will be able to:

- 1. Collect data
- 2. Present data using various graphical methods
- 3. Calculate and interpret numerical summaries
- 4. Use and apply laws of probability and learn how these laws are used in statistical inference

5. Use the concepts of sampling distributions and learn how it applies in making statistical inferences be based on sample of data

6. Be familiar with some important discrete and continuous distributions

7. Make appropriate use of statistical inference

Learning Outcomes

• Knowledge and understanding

The student will have the knowledge and understanding of how to apply statistical concepts into real world problems. The course also serves as a prerequisite to other statistics courses such as probability theory and mathematical statistics.

• Cognitive skills (thinking and analysis)

The student will be taught how to think statistically. In other words, the course assists the student in the understanding and application of many statistical methods and how to analyze real world data.

Assessment Distribution

Students will be assessed based on a 100 total marks, which are distributed as follows.

Exam	Type Expected	Time Points Allocated
First	19/11/2013 - 27/11/2013	20%
Second	28/12/2013 - 6/1/2013	20%
Quizzes	3 quizzes	20%
Final	1-9/02/2014	40%

Class Attendance

Attendance is expected of every student. Being absent is not an excuse for not knowing about any important information that may have been given in class. Under the University's regulations, a student whose absence record exceeds 15% of total class hours will automatically fail the course. Students who in any way disrupt the class will be expelled from the classroom and will not be allowed to return until the problem has been resolved.

Project Assignments

Students are allowed to work together on a project assignment; however, the work that is turned in by each student must be his own. For instance, a mere copy of another student's work will not be graded. A written project must be properly presented to receive full credit. A late project is penalized one point per day after its due date. A project sent by email will not be accepted.

Late Exams

Late (make-up) exams will be given only to students who have a valid excuse and are able to provide a written document for its verification. The level of difficulty of a late exam is about 50% higher than that of the corresponding regular exam. All late exams will be conducted during the last week of the semester. Each student is allowed only one make-up in a semester, either for the first exam or the second, but not both. There is no make-up for a late exam.

Ameina AlTaani